
学位論文

Study on Optimizing Compilers to Support

Software Distributed Shared Memory System

ソフトウェア DSMを支援する

最適化コンパイラに関する研究

平成 11年 12月 博士 (理学)申請

東京大学理学系研究科情報科学専攻

丹羽 純平

Abstract

A coherent shared address space provides an attractive programming environment for parallel

computing. If such an address space is to be used in a distributed-memory system without dedicated

communication hardware, software remote-data caching mechanism (software Distributed Shared

Memory: DSM) must be used. Optimizing methods are indispensable for improving the performance

of Software DSM schemes. That is, compiler optimization, protocol optimization, run-time system

optimization, and the interfaces that enable these optimizations are required.

We have introduced two compiler-assisted software DSM schemes as these interfaces. One is

a page-based system (Asymmetric Distributed Shared Memory: ADSM) that uses the TLB/MMU

mechanisms only for cache-misses. The other is a segment-based system (User-level Distributed

Shared Memory: UDSM) that uses user-level checking codes and consistency management codes for

software caching.

We have proposed a compiler optimization framework that directly analyzes the explicitly par-

allel shared-memory source programs and optimizes them. The optimizing compiler exploits the

capabilities of middle-grained/coarse-grained shared-memory access to reduce the volume of com-

munications and to reduce the overhead for the user-level checking codes. It performs interproce-

dural points-to analysis and interprocedural shared-access set calculations by using interval analysis

to solve redundancy elimination equations along with lazy release consistency model. We have

implemented this optimizing compiler, Remote Communication Optimizer :RCOP.

We have developed the cache-coherence protocols that follow the lazy release consistency model.

Our experiment shows that SAURC (Software emulation of Automatic Update Release Consistency)

protocol provides the best performance among the protocols that follow lazy release consistency

model. We have developed the lightweight run-time system for cache-coherence based on SAURC,

and we have implemented the run-time system for ADSM and UDSM on an SS20 workstation cluster.

Both systems provide high speed-up ratios for the SPLASH-2 benchmark suite. The experimental

results show that the combination of the optimizing compiler and Software DSM is very effective.

The experimental results also show that the performance of the ADSM scheme is limited by the com-

munication of unnecessary data, while that of the UDSM scheme is limited by the instrumentation

overhead.

The results of this study indicate that executing parallel shared-memory programs with au-

tomatic optimizations for remote communications under a general-purpose operating system on a

stock network of workstations is feasible.

Acknowledgments

I wish to thank Prof. Kei Hiraki and Mr. Takashi Matsumoto. They have provided

me with advice, encouragement, and support througout my graduate career. I would

also like to thank Mr. Tatsushi Inagaki (presently with Tokyo Research Laboratory,

IBM Japan, Ltd), who taught me various things about compilers and have worked

with me a few years. I cannot gain my result without his sincere advise.

My time at Hiraki Laboratory was made special by many friends. Junji, Kiyohumi

and Ryouta (presently with ACCESS CO., LTD) all helped make my life at Hiraki

Laboratory happy. I am grateful to my seniors, Mr. Shin’ich Furuso (presently with

Sony Corporation) and Mr. Kanemitsu Ootsu (presently with University of Faculty

of Engineering, University of Utsunomiya) for their kindnesses. I am also indebted

to the system administrators at Hiraki Laboratory for maintenance of the research

environment. I would like to thank all the other people of Hiraki Laboratory. Special

thanks are also due to Mrs. Akiko Shintani, a super librarian of Dept. of Information

Science. She always helps me search for literatures. I am greatly thankful to Mrs.

Mary Inaba for treating me many times. I also thank for financial help by JSPS

Research Fellowships for Young Scientists.

I am thankful to my parents and to my sister for their understanding.

ii

Contents

1 Introduction 1

1.1 Programming Model and Its Implementation 2

1.2 Challenges of Software DSM . 4

1.3 Outline of Our Approach . 7

1.4 Compiler-Assisted Software DSM . 9

1.5 Optimization Using Application’s Semantics 11

1.5.1 Compiler Optimization . 11

1.5.2 Run-time Optimization . 14

1.5.3 Protocol Optimization . 15

1.6 Contributions . 17

1.7 Thesis Organization . 19

2 Target DSM Schemes 21

2.1 Basic Assumptions . 21

2.2 Background and Motivation . 22

2.3 Asymmetric DSM . 26

2.4 User-level DSM . 28

2.5 Features of Target DSM schemes . 29

2.6 Summary . 33

3 Compiler Optimization for Software Cache 35

3.1 Overview of Optimizing Techniques 36

3.2 Graph Terminology . 39

iii

iv CONTENTS

3.3 Application Program Interface . 40

3.4 Scalar Dataflow Analysis . 41

3.5 Precise Shared-Accesses Detection . 45

3.5.1 Interprocedural Points-to Analysis 46

3.5.2 Detection Methods . 51

3.6 Shared-Read Optimization Methods 53

3.6.1 Remove Redundant Checking Routines 53

3.6.2 Merge Multiple Checking Routines by Using Loop Structures . 58

3.7 Shared-Write Optimization Methods 81

3.7.1 Remove Redundant Consistency-Management Routines 83

3.7.2 Merge Multiple Consistency-Management Routines by Using

Loop Structures . 84

3.8 Summary . 90

4 Run-Time Optimization for Software Caching 93

4.1 Cache-Coherence Protocol . 94

4.2 Implementation Issues . 98

4.3 Empirical Evaluation of Protocol . 99

4.4 Basic Design of a Lightweight Run-time System 104

4.4.1 Primitive Data Structure . 106

4.4.2 Consistency-Management Routine 108

4.4.3 Cache-State Checking Routine and Cache-Miss Handler 112

4.4.4 Acquire (Lock) Operation . 117

4.4.5 Release (Unlock) Operation 117

4.4.6 Barrier Operation . 118

4.5 Summary . 124

5 Performance Evaluation 127

5.1 Environment . 127

5.2 Applications . 130

5.3 Overheads for Cache-Management Routines 132

5.4 Optimization Effects on Parallel Execution 133

CONTENTS v

5.5 Effects of Shared-Write Optimization 135

5.6 Effects of Protocol Optimization . 137

5.7 Effects of Shared-Read Optimization 143

5.8 Effects of Run-Time Optimization . 145

5.9 Parallel Performance . 147

5.10 Summary and Discussions . 151

6 Related Work 155

6.1 Compiler-Assisted DSM . 155

6.2 Comparative Study of Software DSM Schemes 158

6.3 Interprocedural Optimizing Compiler 159

7 Conclusion and Future Direction 163

7.1 Conclusion . 163

7.2 Future Direction . 166

Bibliography 169

vi CONTENTS

List of Tables

2.1 Comparison between SVM and our target schemes. 30

5.1 Peak bandwidthes of the MBCF/100BASE-TX (from Ref.[59]). 128

5.2 One-way latency of the MBCF/100BASE-TX (from Ref. [59]). 128

5.3 Classifications of sharing patterns and synchronization granularities in

SPLASH-2 Applications. 131

5.4 Problem size and sequential execution time (sec) and overheads for

cache-coherence management. 132

5.5 Effects of optimization for ADSM/SSS–CORE (executed on 16 proces-

sors). 134

5.6 Average time breakdowns(sec) for 16-processor execution. 148

5.7 Checking overheads found in the Shasta system (from Ref. [77]) . . . 153

vii

viii LIST OF TABLES

List of Figures

1.1 Software distributed shared memory (DSM). 5

1.2 Optimization utilizing LRC in ADSM. 13

1.3 Optimization utilizing LRC in ADSM (2). 14

2.1 Sequential consistency (Invalidate protocol). 23

2.2 Release consistency (Invalidate protocol). 23

2.3 Lazy release consistency (Invalidate protocol). 24

2.4 Diff creation. 25

2.5 SVM execution model. 32

2.6 ADSM execution model. 33

2.7 UDSM execution model. 34

3.1 Overall compilation process. 38

3.2 Example of generated code. 39

3.3 Sample program written in C extended by PARMACS. 42

3.4 Example loop with SSA form. 43

3.5 Example of continuous scalar variable: k. 45

3.6 Example of continuous array variable: A[j]. 45

3.7 Example of dereference-expression evaluation. 47

3.8 Sample program with two calling contexts. 49

3.9 Graphical representations of points-to functions for IndirectSwap

in Figure 3.8. 50

3.10 Translation of final points-to functions into calling contexts in Figure

3.8. 50

ix

x LIST OF FIGURES

3.11 Example of shared-access detection. 51

3.12 Output codes for first pass. 52

3.13 Example of code generation (1). 54

3.14 Dataflow equations used to remove redundant check routines. 56

3.15 Solution of dataflow equations described in Figure 3.14 (1). 56

3.16 Solution of dataflow equation described in Figure 3.14 (2). 57

3.17 Example of code generation (2). 59

3.18 Redundancy elimination dataflow equations using shared-access sets

for checking routines. 60

3.19 Example of fusion operation. 63

3.20 Reduction of interval with its header. 65

3.21 Computing interval summary (anticipatability). 67

3.22 Sample loop with two exits. 69

3.23 CFG of sample loop shown in Figure 3.22. 69

3.24 Example of coalescing operation. 71

3.25 EvalProc process. 78

3.26 Sample code segment. 80

3.27 Apply summary of callee to call site. 81

3.28 Output code of Figure 3.26. 82

3.29 Redundancy elimination dataflow equations using shared access sets

for consistency-management routines. 84

3.30 Output code for ADSM/SSS–CORE system. 87

3.31 Output code for UDSM/SSS–CORE system. 87

3.32 Execution model of memory access. 89

4.1 Example of HLRC protocol. 95

4.2 Example of SAURC protocol. 96

4.3 Example of HYBRID Protocol . 97

4.4 Cache-coherence protocol effects on LU-Contig. 101

4.5 Cache-coherence protocol effects on Radix. 102

4.6 Cache-coherence protocol effects on FFT. 103

LIST OF FIGURES xi

4.7 Mechanisms of cache-management routines. 107

4.8 Algorithm for the consistency-management routine. 109

4.9 Algorithm for combining used in the consistency-management routine. 110

4.10 Example of home-only protocol. 113

4.11 Inline-codes for cache-state checking routine. 114

4.12 The pseudo code for acquire operation 115

4.13 The pseudo code for acquire handler operation 116

4.14 Behavior of shared-write and release operations. 118

4.15 The pseudo code of release operation. 119

4.16 The pseudo code of release handler operation. 120

5.1 SSS–CORE/an SS20 workstation cluster connected with a 100BASE-

TX Ethernet. 129

5.2 Effects of shared-write optimization for ADSM/SSS–CORE (executed

on 16 processors). 136

5.3 Effects of shared-write optimization for UDSM/SSS–CORE (executed

on 16 processors). 136

5.4 Permutation phase. 137

5.5 Code for the permutation phase. 138

5.6 Output code for permutation. 139

5.7 Effects of protocol optimization for Radix. 140

5.8 Transpose phase. 141

5.9 Code for the transpose phase in FFT. 141

5.10 Output code for the Transpose. 142

5.11 Effects of protocol optimization for FFT. 144

5.12 Effects of shared-read optimization for UDSM/SSS–CORE (executed

on 16 processors). 145

5.13 Effects of packet combining for UDSM/SSS–CORE (executed on 16

procs) . 146

5.14 Speed-up ratios on 8 and 16 processors. 147

xii LIST OF FIGURES

Chapter 1

Introduction

Parallel processing has been developed because many recent applications require more

computational power than is available from sequential processing. Parallel systems,

however, have not yet been widely used because they tend to be expensive and to

require a great deal of programming effort. There is, therefore, a need for general-

purpose scalable parallel computer systems using off-the-shelf hardware.

Distributed-memory computer systems are called NUMA (nonuniform memory

access) architectures, and are more suitable for scalable parallel computer systems

than are UMA (uniform memory access) architectures such as SMP (symmetric mul-

tiprocessors) because NUMA architectures support more processors and because the

fast local-memory-access in NUMA architectures is advantageous.

Recent progress in micro electronics has led to distributed-memory parallel com-

puters, called computer clusters, consisting of off-the-shelf processors and networks.

The performance of the off-the-shelf processors used in the workstations and personal

computers is much the same as that of MPP (massively parallel processor). Fast com-

modity networks such as the Fast Ethernet and Gigabit Ethernet have come into wide

use recently, and high-performance workstations and personal computers in offices or

in laboratories are often connected by such commodity networks. The computer

clusters thus formed are NUMA architectures and can be considered general-purpose

scalable parallel computer systems.

1

2 CHAPTER 1. INTRODUCTION

1.1 Programming Model and Its Implementation

In the programming of parallel applications on computer clusters, automatic-

parallelization of sequential applications is best for the programmer as long as it

provides high performance. But because the current automatic-parallelizing compil-

ers [7, 9, 49, 85] support only a limited class of applications such as regular computa-

tion, programmers need to write the parallel applications themselves. There are two

programming models:

• Distributed-memory programming model

This model, also called the message passing model, supposes that an address

space is fragmented. That is, each process has its own address space and can

access only the local memory of the processor executing that process. Program-

mers must distribute the data and explicitly specify the communication codes

for accessing data in the local memories of the other processors. This makes

the parallel programs difficult to design and debug. In addition, the algorithm

choice is often limited by the data distribution.

• Shared-memory programming model

This model supposes a single shared-address space: all memory locations are

accessed by each processor. There is no need to distribute the data, and irregu-

lar computation (such as fluid dynamics computation and molecular dynamics

computation) is easier to handle when all the processors have direct access to

all the shared data.

The shared-memory programming model can thus be expected to make it much

easier for programmers to write parallel applications, and to further simplify the pro-

gramming, we need general-purpose scalable parallel computer systems that provide

this model.

Programmers can easily write data parallel programs which are defined as single-

threaded, shared-memory and loosely synchronous parallel computation. An effective

way to execute these kinds of programs on distributed-memory parallel computers

1.1. PROGRAMMING MODEL AND ITS IMPLEMENTATION 3

efficiently is to use an optimizing compiler, that translates these programs into SPMD

(single-program multiple-data) programs [14, 25, 75, 48]. We call this approach the

compile-time approach.

In this approach, shared data is distributed among the local memory spaces of

the various processors according to programmer-supplied directives like those used in

HPF (ALIGN, DISTRIBUTE, and so on) [38]. Computation is partitioned so that

communication is reduced. Data is transfered among processors in explicit communi-

cation codes inserted by the optimizing compiler, and these codes are often aggregated

into one large message to reduce communication overheads.

The explicit communication codes can be inserted only when the optimizing

compiler analyzes the set of data that needs to be transferred by the processors

(communication pattern). In many applications, however, such as those using a

sparse matrix or an unstructured mesh, the communication pattern is not known at

compile-time. These cases require the use of code-generation methods that enable

run-time optimization.

The optimizing compiler translates the original computation loop into two phases.

One is the pre-process routine, called inspector. The inspector calculates the com-

munication pattern at run-time before the actual computation. The other is the

computation loop, called executor. The executor consists of aggregated communica-

tion and the actual computation. The aggregated communication is performed using

the communication pattern obtained by the inspector. This run-time scheme is called

the inspector/executor scheme [25, 75, 48].

The overhead for the inspector in the inspector/executor scheme is large because

the routine uses all-to-all communication. The inspector/executor scheme, therefore,

is not efficient when the inspector is executed frequently. The compiler analysis

needed to reduce the number of inspector routines is complicated [2], and this compile-

time approach anyway does not easily handle pointers and multilevel indirect accesses

[18]. In addition, data parallel programs cannot perform dynamic task scheduling

using the lock mechanism.

Consequently, programmers often write explicitly parallel shared-memory pro-

grams that it is difficult or impossible to express in a data parallelism. To execute

4 CHAPTER 1. INTRODUCTION

explicitly parallel shared-memory programs efficiently on distributed-memory parallel

computers, we need to provide a shared-address space at run-time. This is called the

distributed shared memory (DSM) scheme [16, 45, 50, 52, 53, 74], and it, of course,

executes data parallel programs efficiently. In the DSM scheme, processors use mem-

ory loads and stores for communications. Every processor can directly address not

only its own local memory but also the remote memories of every other processor.

Remote-memory accesses are detected dynamically and the necessary communication

is invoked. This run-time approach can handle pointers and multilevel indirect ac-

cesses easily because applications share a single address space. It can thus be used

with applications that perform dynamic task scheduling and construct complex ob-

jects and data-structures.

The fact that the run-time approach can accept wider class of applications than

can the compile-time approach suggests that the run-time approach is superior to the

compile-time approach from the viewpoint of the user-interface.1 The question asked

here is whether or not the DSM scheme can provide high performance.

1.2 Challenges of Software DSM

In the DSM scheme, a remote-memory access through the interconnection network can

cause a large latency, and this latency degrades the system performance. Keeping

the memory accesses local is, therefore, important because the latency of a local

memory access is much smaller than that of remote memory access. This is done

by caching remote data in the local memory. This caching, however, introduces

coherence problems in that processors must create local copies of remote data and

keep the copies up-to-date.

The hardware approach, called Hardware DSM [16, 52, 50, 74] provides high per-

formance but requires dedicated communication hardware and has a high implemen-

tation cost. The software approach called Software DSM [11, 17, 44, 46, 53, 39, 79]

has several advantages.

1It should be noted that the run-time approach is not incompatible with compile-time approach.

1.2. CHALLENGES OF SOFTWARE DSM 5

L2C

Processor
L1C

Memory

Software
Cache

NI

Network

L2C

Processor
L1C

Memory

Software
Cache

NI

Shared Memory

L1C,L2C: hardware cache NI: Network interface

L2C

Processor
L1C

Memory

Software
Cache

NI

� � �

Figure 1.1: Software distributed shared memory (DSM).

• Its hardware overhead is low,

• It is easily implemented on the existing distributed-memory computers with

commodity hardware, and

• Software-based coherence is more refined than hardware-based coherence.

Software DSM, thus, seemed more suitable for scalable parallel computer systems

with off-the-shelf hardware, and the question, thus, becomes one of whether or not

high performance could be obtained with Software DSM.

The coherence management techniques in Software DSM are based on those used

in cache-coherent Hardware DSM, and the approaches to Software DSM can be clas-

sified into two kinds: page-based and segment-based. We are not concerned here with

systems that force programmers to rewrite existing programs [11, 80, 44] because our

goal is to make parallel programming easy for programmers.

6 CHAPTER 1. INTRODUCTION

Page-based approach

This approach, called Shared Virtual Memory (SVM), uses hardware page-

management mechanisms [17, 46, 53, 39]. That is, page-fault traps and write-

protection traps are used to trigger the coherence-management mechanism. Accord-

ingly, the size of the coherence unit (i.e., the size of software cache) is equal to that

of memory-page. A large page size leads to problems with false sharing [10] because

conventional coherence protocols [51] force processors to gain sole ownership of the

software cache (i.e., page) before they modify it. Even when multiple processors at-

tempt to modify disjoint sets of data on the same page, they contest the ownership

of the page. The “ping-pong” situation developing when page contents are transfered

through interconnection network repeatedly, degrades the system performance.

A relaxed coherence mechanism was therefore developed, called lazy release con-

sistency (LRC) [46]. It is a refinement of release consistency [30]. In LRC, coherence

actions are postponed as long as possible. The write results of one processor in a

critical section are not visible to another processor until it enters the critical section,

or the write results of one processor are not visible to another processor until barrier

synchronization is executed. LRC has been implemented in many systems [45, 39]

together with multiple writer protocol [17] that allows multiple processors to write the

different portions of the same page concurrently. This improves SVM performance

because multiple writer protocol helps prevent false sharing.

Problems, however, remain in these systems using LRC with multiple writer pro-

tocol. One is that the overheads for coherence actions at shared writes are large

because coherence actions are invoked before the corresponding store instruction and

they must save the copy of the page to compute modification to the page. Another

is that unnecessary data is transfered because the coherence size cannot be adjusted

to the size most suitable for the application. This results in network saturation and

degrades the system performance [27].

Segment-based approach

In this approach, all the coherence-management mechanisms are implemented in soft-

ware [19, 79]. The coherence-management operations are statically inserted before

1.3. OUTLINE OF OUR APPROACH 7

each shared load and shared store by an optimizing compiler transparently rewrit-

ing the application executables. Because in this approach the size of the coherence

unit is flexible, fine-grained accesses, which reduce false sharing and unnecessary data

transfer, are supported.

There are several problems, however. One is that it is hard to make the best

use of hierarchical structures (i.e., procedure calls and loops) in the program being

compiled when it is a binary one. As a result, fine-grained communications may

be invoked frequently. This is not desirable in computer clusters with off-the-shelf

network hardware because such hardware has non-negligible communication overhead.

Another problem is one of overheads for coherence management. Since coherence

management is implemented in software entirely, it is important to reduce instru-

mentation overheads. Even the peephole optimization performed by analyzing binary

codes reduces the instrumentation overhead for coherence management, and it seems

likely that performance can be further improved by analyzing the source program

directly.

1.3 Outline of Our Approach

Our objective is to make it possible to run explicitly parallel shared-memory programs

on distributed-memory computer systems with off-the-shelf communication hardware

efficiently. The software DSM mechanism is used and remote-data-access latency is

reduced by using the local processor memory as a software cache for remote data.

The communication overheads and instruction overheads for coherence-management

are minimized by using user-level software coherence-management and an optimiz-

ing compiler along with the relaxed coherence mechanisms LRC and multiple writer

protocol.

The optimizing compiler directly analyzes explicitly parallel shared-memory

source programs. In general, source codes of parallel applications are widely available

and they are recompiled if we run them under the different platforms. It thus seems

appropriate for the optimizing compiler to compile explicitly parallel shared-memory

programs directly.

8 CHAPTER 1. INTRODUCTION

Although the optimizing compiler feeds the source program information back

to the Software DSM run-time system, the optimizing compiler does not generate

message-passing programs. It inserts in the source program the cache-coherence-

management routines that invoke the run-time library. In other words, these routines

inform the run-time library that the processor itself will soon issue shared reads from

the region specified by the parameters or that the processor itself has already issued

shared writes to the region specified by the parameters.

Two features of this approach are the followings:

• Specific cache-coherence-management routines are inserted.

The coherence management is separated from the corresponding memory-

accesses (loads/stores).

• Coherence actions are not invoked at each memory-access (load/store).

The use of the relaxed coherence mechanism LRC together with multiple writer

protocol enables the processor to postpone the coherence actions as long as

possible.

These facts enable optimization. Roughly speaking, the optimizing compiler attempts

to eliminate as many as possible of the redundant cache-coherence-management rou-

tines acting on the same region (i.e., cache-coherence-management routines whose

parameters are same). The optimizing compiler also tries to issue cache-coherence-

management routines with larger size (e.g., the array-size, the object-size, etc) than

each memory-access size (e.g., byte, word, double-word). These optimizations make

a program more efficient by reducing the overhead for cache-coherence management.

The resultant program is compiled by a sequential compiler making good use of

the platform information, then linked with the run-time library for user-level cache-

coherence management to generate executable code.

1.4. COMPILER-ASSISTED SOFTWARE DSM 9

1.4 Compiler-Assisted Software DSM

The optimizing compiler enables the Software DSM mechanism that accepts a wide

range of shared-memory applications to execute these applications efficiently. It in-

troduces integrated compile-time and run-time Software DSM schemes. In these

schemes, a compiler/programmer exploits application’s semantics to improve perfor-

mance (e.g., aggregates the communication) while application can use the shared

address directly. Software DSM schemes used in this thesis are as follows:

1. Asymmetric DSM[62, 60] (ADSM)

In page-based approaches, the coherence actions are executed in trap handlers.

Therefore, the optimization exploiting application’s semantics cannot be per-

formed. When LRC is used with multiple writer protocol in these approaches,

the overheads for coherence actions at shared writes are quite large because of

the copies created [45, 17].

For instance, consider dynamic, irregular computation that requires run-time

support. In inspector/executor schemes, the inspector overheads for identifying

communication patterns are large. In the current page-based Software DSM

schemes, on the other hand, the overheads for computing modification are large

because the coherence actions are triggered only by write-protection traps.

Remote accesses are detected dynamically when the run-time approach is used,

and most of the inspector overheads in inspector/executor schemes are thus

eliminated. On the other hand, if the compile-time approach is used along with

a relaxed coherence mechanism, modifications to shared data are calculated

efficiently in the executor inserted by the compiler, thus eliminating the coher-

ence management overheads associated with current page-based Software DSM

schemes.

This example shows the operation of a hybrid of the page-based DSM scheme

and the inspector/executor scheme along with relaxed coherence mechanism. In

this hybrid scheme, remote-accesses are detected by hardware page-management

10 CHAPTER 1. INTRODUCTION

mechanisms. On the other hand, the run-time system executes cache-coherence-

management routines inserted by the compiler for shared-writes. That is, store

instructions no longer trigger coherence actions at the shared-writes. The coher-

ence management overheads are eliminated and the necessary communications

are aggregated.

2. User-level DSM [60, 63] (UDSM)

The problem in page-based approaches is the false sharing and transferring un-

needed data that occurs because of the fixed size of the coherence unit (i.e.,

the software cache). If the volume of communications is to be reduced, the

size of coherence unit must be flexible. This need for flexibility inspires the

segment-based approach, but that approach has overheads for coherence man-

agement entirely in software and for the fine-grained communications that may

be invoked frequently.

Off-the-shelf network hardware has non-negligible overheads for communication

and are therefore not well-suited to fine-grained communications. It is, thus, im-

portant to reduce not only the volume but also the number of communications

in distributed-memory computer systems with such hardware. Code-generation

methods that aggregate the necessary communications is required. There is

thus a need for a segment-based Software DSM scheme integrated with inspec-

tor/executor scheme.

In this scheme, the optimizing compiler directly analyzes not the binary pro-

gram but the source program. The optimizing compiler, thus, makes best use of

the hierarchical structures of the application (e.g., loops and procedure calls).

Therefore, along with the relaxed coherence mechanism, the cache-coherence-

management routines required for each shared-memory access are aggregated

by using inspector/executer code-generation methods. This eliminates fine-

grained coherence-management and communication. Consequently, the instruc-

tion overheads and the communication overheads are reduced.

In this scheme, not only consistency-management at shared-writes but also the

detection of a cache-miss/cache-hit are executed as user-level codes. When the

1.5. OPTIMIZATION USING APPLICATION’S SEMANTICS 11

platform supports user-level communication, the communication is also exe-

cuted as user-level codes. It is appropriate to consider that this scheme still

leaves much room to optimize coherence-management/communication for pro-

grammers/optimizing compilers.

1.5 Optimization Using Application’s Semantics

Since the optimizing compiler directly analyzes a explicitly parallel shared-memory

applications, it can perform various optimizations, making the best use of an appli-

cation’s semantics. The cache-coherence-management routine is the key to making

the best use of the application’s semantics. It is inserted by the optimizing compiler

and it is executed as user-level codes by the run-time system. There are two primary

interfaces: the cache-state checking routine and consistency-management routine.

1. Cache-state-checking routine

This user-level routine informs the run-time system that shared-memory ac-

cesses will occur in a contiguous shared region. The parameters for this routine

are the initial address and the size of the region. This routine ensures the co-

herence. That is, it checks the cache-state and invokes the cache-miss handler

if the state is invalid. It is required before each shared-load and shared-store in

UDSM.

2. Consistency-management routine

This routine informs the run-time system that shared-writes have occurred in

a contiguous shared region. The parameters for this routine are also the ini-

tial address and the size of the region. This routine executes the consistency-

management at shared-writes. It is inserted after each shared-store.

1.5.1 Compiler Optimization

Non-negligible overheads are incurred when cache-coherence-management routines

are inserted for each memory access. The optimizing compiler, therefore, performs

12 CHAPTER 1. INTRODUCTION

the following optimizations.

• Precise shared-access detection

There is no need to insert cache-coherence-management routine for memory

accesses to private data such as stack data and static data because private data

is never shared by processors. It is, thus, necessary to detect which accesses are

shared and which accesses are private.

Because the purpose of our system is to accept wide range of applications,

it needs to handle applications written in C language. When the input pro-

grams are written in C, a shared address can be contained in a pointer variable

and can be passed across procedure calls. Therefore, when a memory access

through a pointer exists, a shared data may be accessed. It thus seems that

cache-management routines for all the indirect accesses must be inserted. This

approach causes non-negligible overheads for cache-coherence management.

Therefore, the precise points-to information across procedures is essential to

reduce these overheads. This information is obtained by using interprocedural

context-sensitive points-to analysis [28, 82, 84].

• Relaxed coherence mechanism utilization

In LRC, modifications to shared data by one processor are not visible until

another processor executes the corresponding synchronization statements. This

leaves much room for compiler optimization.

Consider the following example. Multiple shared writes are issued onto con-

tiguous locations and the program does not reach the synchronization point. It

is not necessary for consistency-management routines to be issued immediately

after each shared store. The consistency-management routine has only to be

issued onto the coarse-grained region (i.e., the entire array) at once after all the

stores. Figure 1.2 shows the example of this optimization.

Consider the another example. Multiple shared writes to the same location are

issued and the program does not reach the synchronization point. It is not

1.5. OPTIMIZATION USING APPLICATION’S SEMANTICS 13

a: shared array of doubles W: consistency-management routine�

✧

✥

✦

for (i = 0; i<n; i++) {

a[i] += alpha * b[i];

W (&a[i], 8);

}

⇓ Optimization

for (i = 0; i<n; i++) {

a[i] += alpha * b[i];

}

W (a, 8 * n);

Figure 1.2: Optimization utilizing LRC in ADSM.

necessary for consistency-management routines to be issued exactly after each

shared store. The consistency-management routine has only to be issued onto

the region at once after the last store.

Advantage of cache-coherent-management routines from the view point of compiler

This interface considerably lightens the burden on the optimizing compiler. The

above compiling techniques at first sight seem to be complicated, but whether or not

a process issues the contiguous memory-accesses onto the shared region has nothing

to do with other processes of the parallel program. It is shown in this thesis that

explicitly parallel shared-memory programs can be efficiently analyzed interprocedu-

rally.

Most of the current optimizing compilers [7, 34, 31], in contrast, try to parallelize

sequential programs. They calculate the relations between production and consump-

tion of data to directly insert communication codes. This code-generation method

requires the solution of dataflow equations of array-reference, and only a limited class

of programs can be analyzed in this way.

The other optimizing compilers [14, 2] try to generate message-passing program

14 CHAPTER 1. INTRODUCTION

a: shared array of doubles W: consistency-management routines�

✧

✥

✦

for (i = 0; i<n; i++) {

a[j] += alpha * b[i];

W (&a[j], 8);

}

⇓ Optimization

for (i = 0; i<n; i++) {

a[j] += alpha * b[i];

}

W (&a[j], 8);

Figure 1.3: Optimization utilizing LRC in ADSM (2).

from the data parallel program. They can handle irregular applications using the

inspector/executer scheme, but this approach requires complex analysis techniques if

the inspector overheads are to be reduced [35, 3].

In a parallel program, a parallel process is assigned to a physical processor dy-

namically. Where the written contents should be sent therefore cannot be calculated

statically at compile-time. This problem is solved by the run-time system.

1.5.2 Run-time Optimization

When a cache-coherence-management routine is executed, the run-time library man-

ages the coherence of all the caches within the region specified in the parameters of

the routine.

The run-time overhead for collecting the written contents that is incurred in cur-

rent page-based Software DSM schemes[17, 45] are eliminated by using consistency-

management routines. Furthermore, the address translation overheads required in the

inspector/executer scheme are not incurred because applications handle the shared

address directly.

When communication is required in the cache-coherence management routines,

1.5. OPTIMIZATION USING APPLICATION’S SEMANTICS 15

aggregated communication is issued using the second parameter of cache-coherence-

management routine. When the communication is invoked in the cache-state-checking

routine, –that is, when a cache-miss is detected–, it is necessary to wait for the

communication to be done because the data in the cache is used after the subsequent

corresponding memory-accesses.

In the relaxed coherence mechanism LRC, in contrast, consistency management at

shared writes has only to be done at the subsequent synchronization primitive. Hence,

the communication in the consistency-management routine is invoked asynchronously.

When the compile-time optimization does not work well, the consistency-management

routine is issued for each shared-write. In this case, fine-grained communication

packets may be issued frequently. Therefore, fine-grained communication packets

whose destinations are the same processor can be combined into a large packet at run-

time. Then, the subsequent synchronization primitive must wait for the completion

of all the communication invoked in the previous consistency-management routines.

If at this time there are combined packets not yet transfered, they are transferred to

the corresponding processor.

In this way, the aggregated communication is executed efficiently by integrating

compiler support with run-time support and using the relaxed coherence mechanism.

Asynchronous communication has a hidden cost, however, because it requires

buffering when the receiver is not ready. Recently, commercial distributed-memory

computers provide a direct remote-memory access mechanism [37, 71] (such as

put/get), and even workstation clusters with commodity networks can supply this

kind of mechanism [59]. Therefore, when the platform system provides the direct

remote-memory access mechanism, we can further reduce the communication over-

heads by utilizing it as much as possible.

1.5.3 Protocol Optimization

Another advantage of our approach is that coherence management becomes more ef-

fective because the cache-coherence protocol is tailored to the application’s semantics.

16 CHAPTER 1. INTRODUCTION

Multiple consistency protocols are supported by modifying the behaviors of cache-

coherence-management routines to reduce the number of communications[56, 60, 61].

The performance of parallel shared-memory applications is determined by the

cache-size. In ADSM, cache-misses are detected by hardware page-management mech-

anisms. The cache-size therefore must be the same as the underlying page-size. In

UDSM, in contrast, programmers can freely specify the cache-size.

The performance of parallel shared-memory applications is affected by the cache-

coherence protocol implementation. The relaxed coherence mechanism LRC is imple-

mented in various ways (invalidate, update, etc). When the communication happens

and what volume of data are transferred depends on the cache-coherence protocol

implementation. The LRC has been implemented together with multiple writer pro-

tocol in three ways, so that the effect of the implementation on the performance could

be studied [65, 68, 69]. The implementations, obtained by modifying the behaviors

of cache-coherence-management routines, are the following:

1. Invalidate protocol

The pages modified by other processors are invalidated based on LRC model.

At a cache-miss, not the whole block but the modified part is obtained from

the other processors. Multiple processors may have to be visited to make the

cache-block up-to-date.

2. Home-Update protocol

A home for each cache-block to which all updates are propagated and from

which all copies are derived is maintained. The home is managed by an update

scheme, while the other copies are managed by invalidation scheme.

3. Hybrid protocol

This is a hybrid of Invalidate and Home-update protocols. It maintains for each

cache-block a home, to which all updates are propagated. But, not the whole

block but the modified part is derived from the home at a cache-miss.

Experimental results show that the home-update protocol provides the best results

and that calculation of which data is modified requires a large amount of memory and

1.6. CONTRIBUTIONS 17

a large number of messages. They also shows that the cost of maintaining a conven-

tional time-stamp procedure is non-negligible. The timestamp procedure associated

with each cache is used to determine what data needs to be exchanged [46].

Because the experimental results indicate that the home-update protocol should

be implemented with the low-overhead timestamp mechanism, the home-update pro-

tocol has been implemented by maintaining for each cache the one-bit timestamp

indicating whether or not it has been modified since the last barrier operation [41].

This lightweight run-time system has been implemented on distributed-memory com-

puters with commodity network hardware [41, 67, 70].

The performance of parallel shared-memory applications is also influenced by the

access pattern of the applications. For instance, system performance is markedly

degraded by cache-miss traffic caused by the false sharing at shared writes. This

traffic cannot be avoided by only the run-time support. The optimizing compiler

avoids this traffic by omitting the cache-state checking routine before the shared

stores in the UDSM scheme.

Our system, of course, provides an interface that allows the programmers to explic-

itly specify the coherence protocol, the cache-size, the cache-coherence-management

routines.

1.6 Contributions

The main contributions of this work are the following five.

• Experimental verification of interprocedural context-sensitive points-to analysis

Experiments using SPLASH-2 applications [86] have shown that interprocedural

context-sensitive points-to analysis [28, 84, 82] detects shared memory accesses

precisely.

• Extension and implementation of interprocedural shared-access summary anal-

ysis

18 CHAPTER 1. INTRODUCTION

Methods for summarizing the shared-memory accesses of explicitly parallel pro-

grams written on the relaxed consistency model have been improved. The pre-

vious work [41] has been extended substantially. Redundant shared-memory

accesses are removed by using an interval-based approach to solve redun-

dancy elimination dataflow equations. In the interval analysis, shared-memory-

accesses are merged by using loop structures and procedure calls. This analysis

has been fully implemented and used to show experimentally that SPLASH-2

applications are compiled into efficient codes.

• Development of optimizing methods using cache-coherence-management rou-

tines

The above analysis reduces the instruction overheads for software cache-

coherence management, and the run-time system issues the aggregated commu-

nication by using the compiler-inserted routines. Communication overheads are,

therefore, reduced by integrating compile-time support with run-time support.

Experiments using SPLASH-2 applications demonstrate that both instruction

and communication overheads are reduced considerably.

The relaxed coherence mechanism has been implemented in various ways, and

empirical data showing that it is important to maintain a home for each cache-

block to which all updates are propagated and from which all copies are derived

has been collected. We have improved the home-update protocol with using

low-overhead timestamp mechanism from this data.

• Identification of factors that affect the performance of shared-memory parallel

applications

Shared data allocation, access pattern, and the points of synchronization all

influence the performance of explicitly parallel shared-memory applications, and

the traffic caused by cache-misses at fetch-on-write is a bottleneck in several

applications. It has been demonstrated that this bottleneck is eliminated by

combining the compiler support and the run-time support.

• Demonstration of the feasibility of constructing scalable shared-memory parallel

1.7. THESIS ORGANIZATION 19

computers with commodity hardware

The lightweight run-time system has been implemented under a general-purpose

scalable OS, SSS–CORE [60, 62], on the SS20 workstation cluster connected

with a 100BASE-TX Ethernet. The results of our experiments with this im-

plementation show that our approach achieves a high speed-up ratio with the

SPLASH-2 applications.

The results indicate that explicitly parallel shared-memory programs for Hard-

ware DSM can be executed efficiently on a distributed-system without dedicated

communication hardware by integrating an optimizing compiler support with

general-purpose OS support. Therefore, it is possible to make a general-purpose

scalable shared-memory parallel computer by using commodity hardware.

1.7 Thesis Organization

Chapter 2 describes conventional Software DSM schemes, their problems, and the

target DSM schemes solving these problems. Chapter 3 describes the compiler devel-

oped for explicitly parallel shared-memory programs. It also describes the design and

implementation of the various optimizing methods used in this “Remote Communica-

tion Optimizer”(RCOP). Chapter 4 discusses the implementation of the lightweight

run-time system and implementation of the cache-coherence protocols. Chapter 5

shows the effectiveness of the optimizing methods by presenting experimental data

obtained when using the SPLASH-2 applications. It also discusses the evaluation

of parallel performance and compares the ADSM and UDSM schemes quantitatively

to demonstrate the effects of compiler optimization. Chapter 6 discusses related

work, mainly about compiler-assisted DSM and interprocedural optimizing compil-

ers. Chapter 7 concludes by summarizing this thesis and indicating directions for

proposed optimization techniques and compiler-assisted Software DSM.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Target DSM Schemes

Software DSM provides a shared address space at run-time and accepts wider range

of applications, and it is easy to implement on the existing systems with commodity

hardware. Optimizing methods are indispensable for improving the performance of

Software DSM schemes. Therefore, the interfaces that enables optimizations are

required.

These interfaces used in this theses are Asymmetric Distributed Shared Mem-

ory (ADSM) [60, 62] and User-level Distributed Shared Memory (UDSM) [60, 63].

This chapter explains these two compiler-assisted DSM schemes and highlights their

features by comparing them with the conventional Software DSM scheme.

2.1 Basic Assumptions

The platform we assume here is a distributed-memory computer system with com-

modity network hardware, such as a workstation cluster. Each processor in the system

is assumed to have hardware page-management mechanisms (TLB and MMU). The

virtual address space of each processor in the cluster is divided into a private region

and a shared region. Data in the shared region can be cached by multiple processors

at the same time, with copies residing at the same virtual address on each processor.

The shared address space is divided into ranges of memory called blocks. All the data

in a block is fetched and kept coherent as a unit.

21

22 CHAPTER 2. TARGET DSM SCHEMES

2.2 Background and Motivation

Consider that the caching mechanism used in the Hardware DSM is strictly emulated

in all software. In this approach, a processor needs to test for cache-miss/cache-hit,

to create of data copies, and to manage consistency every time there is a memory-

access. Overheads for the software execution of the cache-coherence management are

thus considerably large.

The most common approach of Software DSM, called Shared Virtual Memory

(SVM) [17, 39, 46, 53], uses hardware page-management mechanisms. That is, TLB

and MMU are used to decide whether there is a cache-miss or a cache-hit and to exe-

cute consistency-management codes at write operations. SVM was first implemented

in the IVY system [53, 54].

The IVY system reduces the coherence-management overhead when a processor

hits the cache, but it makes this overhead when a processor misses the cache or

modifies the cache comparatively large because a processor executes a trap or system

call routine. Furthermore, the large size of the page leads to problems with false

sharing [10]. The IVY system supports only conventional coherence protocol, that

is, sequential consistency (SC) [51]. In SC, the value returned by the read operation

is always the same value as the most recent write operation to the same address.

Therefore, processors are forced to gain the sole ownership of the software-cache (i.e.,

page) before it is modified. Even if multiple processors attempt to modify disjoint

sets of data on the same page, they contest the ownership of the page and the page

contents are transfered repeatedly, degrading the system performance.

Taking account of the large overheads for software coherence management, we can

see that the coherence mechanism must be optimized. Release consistency (RC) is

proposed by Gharachorloo et al. [30]. It was implemented in Hardware DSM mech-

anism [52]. In RC, the processor is allowed to postpone making its modifications to

shared data visible to other processors until it executes a subsequent synchronization

primitive. For instance, consider the example shown in Figure 2.2. Each processor

has a cache y. P1 and P2 also have a cache x. acq (acquire) and rel(release) respec-

tively correspond to the synchronization primitives lock and unlock. Lock and unlock

2.2. BACKGROUND AND MOTIVATION 23

P2[y]

P3[x,y]

P1[x,y] acq

acq rel

relw(x)

inv(x)

w(y)
inv (y)

inv(y)

acq relr(y)

y

Figure 2.1: Sequential consistency (Invalidate protocol).

are used to ensure mutual exclusion among processes. When P2 modifies the cache

y after acquiring the lock, its modification is not visible to P1 and P3 at this time.

When P2 comes to the subsequent synchronization point (i.e., the release point), P2

must propagate its modification of the cache y to the processors P1 and P3. Munin

[17, 42] adopted RC.

P2[y]

P3[x,y]

P1[x,y] acq

acq rel

relw(x)

inv(x)
w(y)

inv(y)

inv(y)

acq relr(y)

m(y)

Figure 2.2: Release consistency (Invalidate protocol).

Lazy release consistency (LRC) [46] was introduced in TreadMarks [45]. It is

extension of RC, and differs from RC in the way the modifications to the data are

propagated. LRC postpones propagating the write results until a lock is acquired, as

opposed to before the corresponding lock release. For instance, consider the example

shown in Figure 2.3. This example is the same as the example 2.2 except that

it is under LRC. When P2 releases the lock after modifying the cache y, P2 does

24 CHAPTER 2. TARGET DSM SCHEMES

not propagate its modification. Subsequently, when P3 acquires the same lock, the

modification of the cache y is propagated to P3. The modification of the cache x by

P1 is also propagated to P3 at this acquire.

P2[y]

P3[x,y]

P1[x,y] acq

acq rel

relw(x)

w(y)

acq relr(y)

m(y)

inv(x)

inv(x,y)

Figure 2.3: Lazy release consistency (Invalidate protocol).

In RC and LRC, multiple writer protocol is used to reduce the false sharing within

a cache (i.e., page). This protocol enables multiple processors to write to the different

parts of the same cache concurrently. In both Munin and TreadMarks systems, before

the cache is modified, the copy of the page must be created to compute modification

of the cache [45, 17] as shown in Figure 2.4. The copy is called twin. The subsequent

release operation requires modifications of the cache to be collected. The collection

is done by comparing the current cache with the twin as shown in Figure 2.4. The

collection of modifications is called diff.

It should be noted, however, that there are still several problems. For one thing,

the overheads for coherence actions at shared-writes and release operations are large

because the twin and diff operations cause considerable overheads [39]. For another,

more than one remote processor may have to be visited in order to obtain diffs at the

cache-miss.

There is an approach that reduces overheads for twin and diff operations by using

additional communication hardware support [39, 40]. Since the network-interface

hardware forwards local writes to the remote memory transparently, the twin and

diff operations are no longer required. This approach uses a home memory for every

cache (i.e., page). Writes to the other copies of the cache are propagated to the home

2.2. BACKGROUND AND MOTIVATION 25

�����������	�
��

Write(x):

x: x:
����x
��������

Release:

x:

Copy

���
����������

�
�����

��������
����

Figure 2.4: Diff creation.

by snooping all the write traffic on the memory bus . In this way the home is used to

collect updates from multiple writers and is always kept up-to-date, while the other

copies are updated on demand. This mechanism was first implemented in SHRIMP

multiprocessors [12] and is called automatic update release consistency (AURC).

The AURC scheme, however, also has several problems. For one thing, addi-

tional communication hardware is undesirable for a general-purpose scalable parallel

computer system with commodity hardware. For another, the AURC scheme gen-

erates a large amount of communication traffic because communication occurs every

time there is a shared-write to the copy page and the entire page is transferred at a

cache-miss.

These SVM approaches always issue shared-memory-accesses as ordinary memory-

accesses (loads/stores). A coherence management mechanism is triggered only by the

trap. The collection of updates from multiple writers either requires large software

overheads, such as those for twin and diff operations or requires a especial hardware

mechanism. It is safe to say that these SVM approaches do not provide interfaces

that enable compilers/programmers to perform optimization.

26 CHAPTER 2. TARGET DSM SCHEMES

There is an object-based approach that allows programmers to perform vari-

ous optimizations [11, 80, 18]. Programmers specify a coherence protocol for each

shared data and explicitly declare association between data and synchronization.

False sharing does not occur in this approach, but, there are always overheads for

packing/unpacking messages. Moreover, existing shared-memory applications require

rewriting. The effort required for porting them can be substantial.

There is segment-based DSM called Shasta [79] that instruments loads and stores

in application binary to check for accesses to remote data. This approach provides

shared memory in all software and supports fine-grained sharing, thus reducing false

sharing and unnecessary data transfer. The instrumentation overhead is reduced

by optimizing techniques, such as batching and invalid flag techniques. Batching

is a technique merging checks of multiple loads and stores only when their base

registers are the same and their offsets are less than or equal to the line-size (64-128

bytes). Consequently, Shasta does not utilize coarse-grained shared-memory-access

although it uses release consistency. The reason for this is that the input program

of the Shasta compiler is binary one. Of course, neither loop-level optimization nor

interprocedural optimization is performed. Therefore, this leads to the frequent fine-

grained communication and commodity network hardware is not good for this kind

of communication.

2.3 Asymmetric DSM

To reduce the overheads for coherence actions at shared-writes and to optimize shared-

writes operations in page-based systems, a page-based software DSM called Asymmet-

ric DSM (ADSM)[60, 62] has been proposed. It combines the page-based approach

with the inspector/executor approach. The compiler can use TLB/MMU mechanisms

to detect remote-accesses dynamically, thereby eliminating the inspector [48, 75] over-

heads. On the other hand, the run-time system can execute compiler-inserted routines

(like executor) for shared-write-accesses. These routines aggregate communications

and consistency-management operations along with LRC.

• Cache-States

2.3. ASYMMETRIC DSM 27

Shared data in the ADSM scheme has only two states:

– invalid

The data is invalid on this processor. If this processor attempts to read

the data or write the data, a page fault trap is triggered.

– read and write

The data is valid on this processor. This processor can both read and write

the data.

• Shared-read

A shared-read operation is executed as a load instruction. If a processor at-

tempts to read data that is invalid, a page-fault trap is executed. The trap

routine invokes the user-level cache-miss handler, which obtains an up-to-date

copy of the block by communicating with other processors and sets the state of

the cache read and write.

• Shared-write

A processor must fetch the cache before it writes the data. This causes a

page-fault trap when the cache is invalid, and the trap routine invokes the

user-level cache-miss handler. The handler obtains an up-to-date copy of the

block by communicating with other processors and sets the state of the cache

read and write.

Furthermore, the codes for managing cache-consistency are required for shared-

write operations, and they are executed as user-level codes. They are separated

from the corresponding store instructions and explicitly inserted after the cor-

responding store instructions by the optimizing compiler.

The strategy for handling shared-read operations is different from that for han-

dling shared-write operations. Therefore, this scheme is called “asymmetric” DSM

(ADSM). It requires both OS support and user-level cache management. ADSM can

be implemented on any distributed system. We have implemented ADSM under a

28 CHAPTER 2. TARGET DSM SCHEMES

scalable OS SSS–CORE [57, 62, 60] on the SS20 cluster. We call the implemented

system ADSM/SSS–CORE system.

2.4 User-level DSM

It is important to reduce both the volume and the number of communications in dis-

tributed systems with off-the-shelf network hardware. The fully user-level software-

cache scheme (User-level DSM:UDSM), where application programs only use user-

level codes to maintain software-cache coherence, is better with regard to code opti-

mizations for inter-node communication than are page-based software DSM schemes.

In other words, UDSM is more suitable than page-based software DSM schemes in

that it offers more opportunities to optimize communication and cache-coherence

management codes.

UDSM is hybrid of the segment-based approach and the inspector/executor ap-

proach. The fine-grained communication and cache-management overheads found in

the Shasta system are avoided by merging user-level cache-coherence-management

codes into a coarse-grained/middle-grained one along with LRC. This is done by ex-

ploiting the code-generation methods used in the inspector/executor approach [3, 2].

• Cache-States

Shared data in the UDSM scheme, like that in the ADSM scheme, has two

states:

– invalid

The data is not valid on this processor.

– read and write

The data is valid on this processor.

• Shared-read

Cache-state checking is required in order to ensure coherence. The optimiz-

ing compiler explicitly inserts a checking routine as user-level codes before the

corresponding load instruction.

2.5. FEATURES OF TARGET DSM SCHEMES 29

When a cache-miss is detected in the checking routine, the user-level cache-

miss handler is invoked. The handler obtains an up-to-date copy of the

block by communicating with other processors and sets the state of the cache

read and write.

• Shared-write

As in ADSM, the optimizing compiler explicitly inserts a consistency-

management routine as user-level codes after the corresponding store instruc-

tion. Cache-state checking is also required before the corresponding store in-

struction in order to ensure coherence.

UDSM also can be implemented on any distributed system. We have implemented

UDSM under the SSS–CORE on the SS20 cluster. We call the implemented system

UDSM/SSS–CORE system.

2.5 Features of Target DSM schemes

Features of target DSM schemes are described here by comparing the target schemes

with SVM (the conventional page-based scheme).

• (Software-)cache block-size

The cache block-size of ADSM is made equal to the size of a memory-page,

because cache-state checking is implicitly supported by the virtual memory

hardware.

The UDSM scheme, in contrast, checks the cache-state by using explicitly in-

serted user-level codes, and the cache block-size is flexible. If it is fine-grained,

the overhead for handling the cache state is not negligible and fine-grained com-

munication, which a commodity network is not good at, may occur frequently.

But if the block-size is too large, excessive false sharing will occur and make

traffic heavy. The block-size, therefore, must be adjusted to improve perfor-

mance.

30 CHAPTER 2. TARGET DSM SCHEMES

Table 2.1: Comparison between SVM and our target schemes.

SVM ADSM UDSM

Cache block-size vm page vm page flexible

(user-defined)

Cache states INVALID INVALID INVALID

R AND W R AND W R AND W

R ONLY

Miss/Hit check MMU/TLB MMU/TLB explicit user-level

codes

Consistency MMU/TLB explicit user-level explicit user-level

management (trap handler) codes codes

Protocol fixed flexible flexible

(user-defined) (user-defined)

User-level impossible write read

optimization write

vm: virtual-memory

R ONLY: readonly R AND W: readandwrite

2.5. FEATURES OF TARGET DSM SCHEMES 31

• Cache-state

In ADSM and UDSM, there is no read only state like that used to exe-

cute consistency-management in SVM because accesses requiring consistency-

management (i.e., shared-writes) are detected statically.

• Miss/Hit check

In SVM and ADSM, the decision of cache-misses/cache-hits is supported by

TLB/MMU mechanisms using page-fault traps.

In UDSM, an explicit user-level routine checks the cache-state. The optimiz-

ing compiler remove redundant checking routines and merges multiple checking

routines onto contiguous regions in order to reduce the overhead for cache-

management. The restriction in batching found in Shasta is not found in UDSM.

• Consistency-management

In SVM, shared-writes are detected by TLB/MMU mechanisms using write-

protection traps. The consistency management is executed in the trap handler.

In ADSM and UDSM, shared writes are detected by the optimizing compiler,

which explicitly inserts user-level routines for cache-consistency management.

The optimizing compiler removes redundant consistency-management routines

and merges the consistency-management routines onto contiguous regions.

• Protocol

Various protocols can be used in ADSM and UDSM by modifying the behaviors

of the consistency-management routines and the state-checking routines [60, 61].

• User-level Optimization

SVM does not provide interfaces that enable compilers/programmers to perform

optimization. ADSM, on the other hand, offers a programmer/compiler chances

to optimize shared-write accesses. UDSM provides a programmer/compiler with

opportunities to perform optimize both shared-read accesses and shared-write

accesses.

32 CHAPTER 2. TARGET DSM SCHEMES

Execution Model

���������	

					

����	����

PF handler
Trap!

���������
��	��

��������

� ����������
������

PF handler
Trap!

	 ����

					

����	�

Sequential
Compiler

Source code Executable code

��shared integer ��invalid

������������

������������

����	�����

����������

�������

Figure 2.5: SVM execution model.

Figure 2.5 illustrates the SVM execution model. In SVM, the source program

is compiled by sequential compiler to generate executable codes. Suppose that a

is shared and is invalid when the executable code runs. A cache-miss is detected

as a page-fault trap and the handler maps the page as read only. The shared

write is detected by a write-protection trap and the handler executes the consistency-

management and maps the page as read and write.

Figure 2.6 illustrates the ADSM execution model. In ADSM, the optimizing

compiler directly compiles the source program in order to detect shared-write oper-

ations and insert user-level consistency-management routines. A cache-miss is de-

tected as a page-fault trap and the handler maps the page as read and write.

The consistency-management is executed by an additional user-level routine (denoted

by W).

Figure 2.7 illustrates the UDSM execution model. In UDSM, the optimizing com-

piler directly compiles the source program in order to detect all the shared-accesses

and insert cache-management routines. Coherence management is not triggered by

traps. Cache-state is checked by an additional user-level routine (denoted by R),

2.6. SUMMARY 33

Source code

��shared integer ��invalid

Optimizing
Compiler

��������	

�����
	���

���������	��

Trap!
PF Handler

 ����

����
�

Executable code

�����������
��	�

��������

� ����������
������
�����W: User-level consistency-

management routine

Figure 2.6: ADSM execution model.

and consistency management is executed by an additional user-level routine (denoted

by W). The optimizing compiler detects the redundancy of the second occurrence

of R(&a,4) and eliminates the second occurrence statically. These detection mecha-

nism and elimination mechanism used in the compiler are described in the following

chapter.

2.6 Summary

The UDSM scheme is segment-based and the ADSM scheme is page-based. In both

schemes, the optimizing compiler feeds the source program information back to the

run-time system. UDSM provides a programmer/compiler with opportunities to op-

timize both shared-read accesses and shared-write accesses, whereas ADSM offers a

programmer/compiler chances to optimize shared-write accesses. Therefore, it de-

pends on an optimizing compiler whether or not ADSM and UDSM produce high

performance.

34 CHAPTER 2. TARGET DSM SCHEMES

Source code

��shared integer ��invalid

Optimizing
Compiler

� ����

�����

������

Executable code

�����	
����

����������

������

�����	
����

������� ���

������
����

R: User-level cache-state
checking routine

W: User-level consistency-
��management routine

����������

�����	�
����

�����
������

���	�����������������

�����������
��������

Figure 2.7: UDSM execution model.

Chapter 3

Compiler Optimization for Software

Cache

This chapter describes the compiler optimization for Software DSM. The purpose of

this optimization is to generate efficient codes reducing both communication over-

heads and instruction overheads for (software-)cache-coherence management. To

achieve this purpose, we have proposed the compiler optimization techniques for ex-

plicitly parallel shared-memory programs. To verify our proposed techniques, we have

developed the optimizing compiler, called a “Remote Communication Optimizer”

(RCOP) [65, 69, 66, 41, 63, 67, 70].

Section 3.1 is the overview of our compiler optimization. Section 3.2 describes

the graph terminology useful when explaining compiling techniques. Section 3.3 de-

scribes the user-interface of the optimizing compiler, and Section 3.4 describes the

scalar dataflow analysis required for successive optimization passes. Next, Section 3.5

describes the detection mechanism of shared-accesses. Finally, Section 3.6 describes

the shared-read optimization methods using a interprocedural redundancy elimina-

tion framework. It also introduces the concept of a shared-access set and explains

optimization using shared-access sets. Section 3.7 describes the shared-write opti-

mization methods by comparing them with the shared-read optimization methods.

35

36 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

3.1 Overview of Optimizing Techniques

The cache-coherence-management routines incur instruction overheads and communi-

cation overheads. Using the relaxed coherence mechanism, however, these overheads

are reduced at compile-time by exploiting the application’s semantics (such as loops

and procedure-calls). This is done by the optimizing compiler.

It is required for the optimizing compiler to perform the following operations to

reduce these overheads:

• It detects shared-memory accesses that need cache management routines pre-

cisely,

• It eliminates redundant cache-management routines, and

• It merges fine-grained cache-management routines into a middle-grained/coarse-

grained one.

The followings are required to reduce achieve these operations:

• Parallel constructs recognition

Our approach deals with explicitly parallel shared-memory programs to accept

wider class of applications. Programmers explicitly specify parallel constructs

such as shared-memory allocation, task creation and synchronization. Thus,

recognition of parallel constructs is required to execute the program in parallel

correctly and efficiently.

Taking program portability and the ease of parallel programming into account,

our approach introduces the extension of sequential programming model with

directives or macros as explicitly parallel shared-memory programming model.

• Precise points-to information

This is required for shared-access detection. It is also required when the cache-

management routines are moved. The reason for this is that when a statement

3.1. OVERVIEW OF OPTIMIZING TECHNIQUES 37

may modify the parameters of the cache-management routine, this routine can-

not be moved across the statement. This information is obtained by interpro-

cedural points-to analysis [28, 82, 84]. This analysis is context-sensitive and

computes all the side-effects of the procedure-call.

• Efficient framework for redundancy elimination

This is required because a control flow graph (CFG) with many cycles (i.e.

loops) must be handled when eliminating redundant cache-management rou-

tines [21, 64]. An interval analysis approach [15] is used to handle the hi-

erarchical CFG, and this approach requires the interval (i.e., loop) summary

to be calculated efficiently. A shared-access set is represented by systems of

linear inequalities and used to help calculate the interval summary of the cache-

management routines easily and precisely. Shared-access sets are also used in

the following optimization techniques.

– Fusion

– Coalescing

– Redundant Index Elimination

– Fission

Shared-access sets across procedures are computed efficiently by using the re-

sults of points-to analysis.

Our proposed approach has been implemented fully in RCOP. Figure 3.1 shows

the overall compilation process. The input program is written in C extended by

PARMACS. The RCOP directly analyzes the source program and creates the directed

Control Flow Graph (CFG) for each procedure in the program. The RCOP puts each

CFG into static single assignment (SSA) form [24].

The RCOP performs an interprocedural points-to analysis to detect shared ac-

cesses. After the points-to analysis, the RCOP inserts a cache-management routines

for each shared-access. Furthermore, the RCOP performs interprocedural shared-

access set calculation to eliminate and merge cache-management routines. The RCOP

38 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Parallel
shared-memory

program
(C+PARMACS)

�Scalar dataflow analysis

�Interprocedural points-to
analysis

�Interprocedural redundancy
elimination

Instrumented
shared-memory

program

Parallel executable

RCOP

Backend compiler
DSM

run-time
library

Code generation

Link

Figure 3.1: Overall compilation process.

translates the input program into an instrumented C program containing explicit user-

level cache-management routines. The output C program is compiled by a backend

compiler, then linked with the run-time library for user-level cache-management to

generate executable code.

A consistency-management routine informs the run-time system that a shared-

write occurred in a contiguous shared region. The parameters for this routine are

the initial address and the size of the region. The routine implicitly requires the

written contents and is inserted after the corresponding store instruction. Cache-

state checking is executed as a user-level routine (i.e., a cache-state-checking routine)

whose parameters are the initial address and the size of the read region. The routine

3.2. GRAPH TERMINOLOGY 39

���������	
���������

�������������

��� �����

�

������

����
��������������

������������������

�

���������	
���������

�������������

��� �����

�

������

����
��������������

������������������

��������	
�����������

�

���������	
���������

�������������

��� �����

�

������

��������	
������������

��������	
������������

����
��������������

������������������

��������	
�����������

�

R:Cache-state checking routine

W:Consistency-management routine

Input code

Code output for ADSM

Code output for UDSM

� and � reside on the shared region

RCOP

Figure 3.2: Example of generated code.

is inserted as a macro before the corresponding load instruction.

Figure 3.2 shows an example of the code generated for each scheme. “W” indicates

a routine for managing consistency, and “R” indicates a routine for checking a cache-

state.

3.2 Graph Terminology

This section introduces graph terminology useful in explaining compiling techniques.

A flow multigraph G = (V,E, r) is a finite set V of nodes, a finite multiset E of edges,

and a starting node r ∈ V . An edge is an ordered pair (p, q) of nodes: p is the source

of the edge, and q is the target of the edge. When edge (p, q) ∈ E, p is a predecessor of

q and q is a successor of p. A sequence of edges (v1, v2), (v2, v3) , . . . , (vn−1, vn) ∈ E

is a path from v1 to vn. A path is denoted by listing the nodes it contains, like this:

40 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

〈v1, v2, v3, . . . , vn−1, vn〉. If there is a path 〈vi, . . . , vj〉, it is said that vi reaches vj . A

path 〈v1, . . . , vn〉 and v1 = vn is called a cycle.

A region R of G is a multigraph whose nodes are in G and such that an edge

(m,n) of G is in R if and only if m and n are both in R. If there is an edge (m,n)

of G where m /∈ R and n ∈ R, the node n is called an entry node of R. A path is

internal to a region if all edges of the path belong to the region. A region is strongly

connected if every node in the region reaches to every other node in the region.

A depth-first spanning tree (T) of G is generated by a depth-first traversal of G.

An edge e = (m,n) is classified as follows:

a tree edge if e ∈ T

a forward edge if e /∈ T andn is a descendant ofm ∈ T

a back edge if m is a descendant ofn in T

a cross edge the other cases

If (l, h) is a back edge, h is a header node and l is a latch node. The interval order of

the nodes of G is the order in which they are visited by a reverse postorder traversal.

For the j-th node (w) in interval order, NUMBER(w) is defined as j. For all the

tree, forward and cross edges (v,w), NUMBER(v) < NUMBER(w) is true. If G is

acyclic, then interval order is a topological ordering. A path whose sequence of nodes

is in interval order is a forward path. A path whose sequence of nodes is in reverse

interval order is a backward path.

A Control Flow Graph is a flow graphG = (V,E, r) which represents the procedure

structure. A node in V represents the statement in the procedure. An edge in E

represents possible transfer of control between such statements.

A Call Graph is a flow graph G = (V,E, r) where each procedure is represented

by a simple node and each call site is represented by a unique edge. The starting

node r is main, and the edge (p, q) represents a call site in p that invokes q.

3.3 Application Program Interface

Our approach deals with explicitly parallel shared-memory programs based on the

Lazy Release Consistency (LRC) [46] model. In this thesis, the input program is

3.4. SCALAR DATAFLOW ANALYSIS 41

written in C extended by PARMACS [13], a parallel macro construction that pro-

vides shared-memory allocation, task creation, and synchronization. It should be

noted that our proposed optimization techniques are still valid as long as the paral-

lel constructs are recognized by the compiler. The program follows a conventional

shared-memory style, using processes to express parallelism, and using locks and bar-

riers to synchronize. Typically the master process initializes the DSM system by a

MAIN INITENV operation, allocates and initializes shared memory by a G MALLOC

operation like malloc, and starts the slave process on each remote processor by a

CREATE operation like fork. After initialization is done, each process (not only

slaves but also the master) performs a portion of the task, communicating through

synchronization operations (LOCK, UNLOCK, and BARRIER). Figure 3.3 shows an

program that fills an array in parallel.

Programmers explicitly specify the parallel constructs to execute the program in

parallel. Therefore, the programmers are responsible for ensuring that the applica-

tions using the parallel constructions run correctly. This indicates that the compilers

are not required to solve the problems that result in incorrect execution, such as

checks for dependencies, conflicts and race conditions. The optimizing compiler ana-

lyzes only the sequential behavior of each process and trace the memory-accesses of

an individual process.

3.4 Scalar Dataflow Analysis

Static single assignment form

Our representation uses the SSA form of a procedure because this form is the key to

efficient execution of interprocedural points-to analysis. In SSA form, each variable is

assigned only at one point in the procedure. To convert a procedure into SSA form,

we must do two things:

• Insert φ-functions at join nodes in the CFG.

A φ-function for a variable v merges the values of v from distinct incoming

control flow paths.

42 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

int *A;
int N = 1000;
int P = 16;
main (int argc, char **argv)
{

int i;
char c;
while ((c = getopt(argc, argv, "N:P:")) != -1) {

switch(c) {
case ’N’:

N = atoi(optarg);
break;

case ’P’:
P = atoi(optarg);
break;

}
}
MAIN_INITENV();
A = G_MALLOC(sizeof (sizeof int) * N);

for (i = 1; i < P; i++)
CREATE(ZeroVector);

ZeroVector ();

WAIT_FOR_END(P - 1);
}

void ZeroVector ()
{

int j, start, end;
int id = GET_PID();

start = id * (N / P);
end = (id + 1) * (N / P);

for (j = start; j < end; j++)
A[j] = 0;

}

Figure 3.3: Sample program written in C extended by PARMACS.

3.4. SCALAR DATAFLOW ANALYSIS 43

• Rename the variables v so that each assignment has a unique destination vari-

able.

The dominance-frontier approach is used [24]. Intuitively, a φ-function for v is placed

at the first CFG node n where two distinct definitions of v reach. The φ-function

itself becomes a new definition of v, so the algorithm iterates. Once φ-functions are

inserted, each variable generation is renamed to a unique name (using subscripts),

and each use of a variable is replaced by the unique reaching SSA definition. An

example of a loop and its CFG in SSA form are shown in Figure 3.4.

��

�������	
���
��

��������

��

���	

�����������

����������

������

Input code (loop) Hierarchical CFG in SSA form

Node

header
latch

�� ���

Figure 3.4: Example loop with SSA form.

Induction Variables and Continuous Variables

The following interprocedural shared-access set calculation requires the detection of

induction variables and of monotonically increasing or decreasing variables. Induction

variables are detected by calculating the following set of expressions IV (X) for each

44 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

statement X in the program:

IV (X) = Assign(var, sym,
∏

s∈succ(X)

IV (s))

Assign(var, sym, IV) represents side-effects of an assignment. When X is an assign-

ment “var := sym”, it returns a set of expressions:

1. IV with every occurrence of right-hand-side var replaced by sym

2. var := sym (The location var must be loop-invariant)

When X has multiple successor statements s, only expressions that are contained

in all IV (s) are propagated to IV (X). After calculating the IV for all statements in

the loop, a variable is a basic induction variable if IV (h) (h: the header node of the

loop) contains an expression var := var + c and c is loop-invariant [34].

Variables that are incremented or decremented conditionally cannot be recognized

as induction variables, but they often show useful properties. They are referred to

here as continuous variables, and are defined by the following conditions:

• A loop-invariant location is conditionally increased or decreased by a loop-

invariant value (an example is shown in Figure 3.5), or

• A loop-dependent location is increased or decreased by a loop-invariant value

(an example is shown in Figure 3.6).

A variable for which the former condition holds is called a continuous scalar variable,

and one for which the latter condition holds is called a continuous array variable.

Continuous variables are detected by calculating the following set of expressions

CV (X) for each statement X in the program:

CV (X) = Assign(var, sym,Reduce(=,
∑

s∈succ(X)

CV (s)))

The location var can be loop-dependent. The operator “Reduce” returns expressions

that are contained in CV of some successors s and have the same increment (or

decrement) value for the same var.

3.5. PRECISE SHARED-ACCESSES DETECTION 45

for (k = 0, i = 0; i < n; i++) {

if (A[i] > 0)

B[k++]=A[i];

}

Figure 3.5: Example of continuous scalar variable:k.

for (i = 0; i < n; i++) {

j = f(i);

B[A[j]++] = g(i,j);

}

Figure 3.6: Example of continuous array variable:A[j].

3.5 Precise Shared-Accesses Detection

All the shared-memory accesses in a given shared-memory program must be identified

if the program is to be executed correctly when cache-coherence management mech-

anism is explicitly implemented by the compiler-inserted codes. Because the input

programs are written in C, a shared address can be contained in a pointer variable

and can be passed across procedure calls. When a write through a pointer exists, it

may access shared data. When the indirect access always invokes the cache-coherence

management mechanism, however, the overheads become large.

Of course, there is an approach to instrument memory accesses to non-private

data1. This approach analyzes the application binary and inserts cache-management

routines for loads and stores whose base registers do not use the stack pointer (SP)

or global pointer (GP) register. This binary-instrumentation approach is easy to

implement, but too conservative. The cache-management routines are also inserted

for memory-accesses to unshared data allocated by malloc. This approach may still

cause large run-time overheads for cache-management routines.

1Private data is all stack and static data.

46 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

To detect accesses to shared data, interprocedural points-to analysis [28, 82, 84]

is used for the following two reasons.

• Successive optimization passes can move code by using pointer information.

Because the optimizing compiler handles C programs, optimization using code

motion requires precise points-to information.

• Precise shared-pointer information prevents false cache-management routines.

The more precise the information, the lower the cost of the shared-set calculation

and the smaller the run-time overheads for cache-management routines.

3.5.1 Interprocedural Points-to Analysis

This analysis calculates the symbolic locations to which variables may point. Vari-

ables and heap locations are represented as a location set (a tuple of a symbolic base

address, an offset, and a stride). The points-to function maps each location to the

set of locations. For example:

double *x, f[10];

x = &f[i];

At the end of the above code segment, x may contain a pointer to f[i]. Thus, the

points-to function is

{(x, 0, 0)} → {(f, 0, 8)}.

The compiler calculates the points-to functions interprocedurally by using a depth-

first traversal of the Call Graph. Within each procedure, iterative dataflow analysis is

used to compute points-to functions. The analysis iterates over the statements in the

procedure, evaluating each statement and updating the points-to functions. When

dereference expressions are evaluated, the pointer values are identified by searching

the dominator tree to find the most recent assignment to the corresponding location.

Figure 3.7 illustrates this process. The assignment at node n1 defines points-to func-

tion (p1, 0, 0) → (x, 0, 0), and the assignment at node n3 defines points-to function

3.5. PRECISE SHARED-ACCESSES DETECTION 47

�������

���	
��
�

�������

�������

�����

��

�����

����	������

Input code Hierarchical CFG in SSA form

	������

	������

	������ 	�����

	������ �	������

	�����

����� �Dereference

�	�������
	������
�	������

��

��

��

��

��

��

��

����

��

Dominator tree

��
�
�
�
�

Figure 3.7: Example of dereference-expression evaluation.

(p2, 0, 0)→ (y, 0, 0). The φ-function at node n4 combines the pointer values from all

the incoming edges for the variable (p). When the dereference expression *p at node

n5 is evaluated, the dominator tree is searched to find the most recent assignment to

the location (p3). Thus, the result of dereference at n4 is {(x, 0, 0), (y, 0, 0)}. If in the
process of looking up the value of a location, the entry node can be reached without a

dominating assignment being found, 2 the location has whatever initial value it had at

the entry to the procedure. That initial value is represented by nonlocal blocks. Each

nonlocal block represents an equivalence class of the caller’s locations and is created

lazily when the pointers are dereferenced. For example, consider the following code

fragment:

int f (int *p, int *q, int *r);

...

f(&x, &x, &y);

2This happens when the parameters of the procedure are first dereferenced or global variables are first

accessed.

48 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Nonlocal blocks are not created until the parameters of f (i.e., p, q ,r) are deref-

erenced at the procedure body:

(p, 0, 0)→ (b 0, 0, 0)

(q, 0, 0) → (b 0, 0, 0)

(r, 0, 0) → (b 1, 0, 0)

where b 0 is bound by{(x, 0, 0)}and b 1 is bound by{(y, 0, 0)}

For call statements, it is necessary to first find the potential callees and then

evaluate the side-effect of the call to the points-to relations, called the partial transfer

function (PTF). For each potential callee, the first thing to do is to find the PTF that

describes the side-effect of the callee in the current calling context. An existing PTF

is checked whether or not it is applied. If the pattern of aliases among the parameters

of the procedure in the current calling context is the same as that recorded in the

PTF, it is reused. If an existing PTF cannot be used, a new PTF is created by

analysing the callee procedure. Once the applicable PTF is found, all the modified

points-to information recorded by the PTF (final points-to functions) is translated

back to the calling context and used to update points-to functions.

For example, consider the codes shown in the Figure 3.8. The analysis begins

by iterating over the statements in the main procedure. After evaluating three as-

signments, the analysis comes to the procedure call f at C1. This is the first time

to evaluate the procedure f, and a new PTF for f is created and the f is analyzed

and final points-to functions shown in the Figure 3.9 are produced. These points-to

functions are translated back to the caller’s name space and the points-to function

after the C1 is updated like this: (x 0, 0, 0) → (y, 0, 0), (y 0, 0, 0) → (x, 0, 0). This

process is shown in the Figure 3.10. With regard to the call at C2, the pattern of

aliases among the parameters at C2 is the same as at C1. Therefore, the same PTF

is reused. But the bind for the nonlocal block at the call C2 is different from that at

the call C1 (shown in Figure 3.10). The result of applying the PTF at C2 is updated

3.5. PRECISE SHARED-ACCESSES DETECTION 49

void IndirectSwap (int **, int **);

void main () {

int x, y, z;

int *x0, *y0, *z0;

int test1, test2;

x0 = &x; y0 = &y; z0 = &z;

if (test1)

C1: IndirectSwap(&x0, &y0);

else if (test2)

C2: IndirectSwap(&y0, &z0);

}

void IndirectSwap (int **p, int **q)

{

int *tmp;

tmp = *p;

*p = *q;

*q = tmp;

}

Figure 3.8: Sample program with two calling contexts.

50 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

�

�

��

�� ��

�

�

��

�� ��

Before the execution of
the IndirectSwap body

�� ��

After the execution of
the IndirectSwap body

���	�	�

���	�	�

���	�	�

���	�	�

�The final points-to function

Figure 3.9: Graphical representations of points-to functions forIndirectSwap in Figure

3.8.

���	�	�

���	�	�

���	�	�

���	�	�

The final points-to function

���	�	�

���	�	�

��	�	�

��	�	�

��

������������

�����������

Nonlocal block binding at C1

Translation

������������

�����������

Nonlocal block binding at C2

���	�	�

���	�	�

��	�	�

��	�	�

��
Translation

Figure 3.10: Translation of final points-to functions into calling contexts in Figure 3.8.

like this: (y 0, 0, 0) → (z, 0, 0), (z 0, 0, 0) → (y, 0, 0). After the procedure calls are

evaluated, the join node at the end of the main is evaluated. The analysis combines

all the possible points-to values for each location. The result is as follows:

(x 0, 0, 0)→ {(x, 0, 0), (y, 0, 0)}

(y 0, 0, 0) → {(x, 0, 0), (y, 0, 0), (z, 0, 0)}

(z 0, 0, 0)→ {(z, 0, 0), (y, 0, 0)}

Details of the algorithm and the implementation of the interprocedural points-to

analysis are described in Wilson’s doctor thesis [82].

3.5. PRECISE SHARED-ACCESSES DETECTION 51

3.5.2 Detection Methods

Shared memory is allocated dynamically by the primitive G MALLOC. The optimiz-

ing compiler track the return values of the primitive G MALLOC, and must insert

cache-management routines. Consider the example shown in Figure 3.11. The

��������	

��	�����������

������������������
�

���������
������
�� �

�!	"�#���$�

��
�������

���	
���������

��

CFG and points-to function

��	
������������

Figure 3.11: Example of shared-access detection.

points-to analysis defines the points-to function at the assignment statement S1 as

(x, 0, 0) → (sheap@S1, 0, 8). “sheap@S1” means the shared heap (i.e., shared mem-

ory) allocated by G MALLOC at S1. The points-to function at the assignment state-

ment S2 becomes (sheap@S1, 0, 8) → {}. Each statement is searched for memory-
accesses to data whose location set is denoted as (sheap@∗, ∗, ∗). In this example, the
destination location of the assignment at S2 (i.e., the location of x[i]) is denoted

as (sheap@S1, 0, 4). That is, the write operation at S2 is a shared one.

For each procedure, each statement is searched for memory-accesses to shared

data by using the points-to information in PTFs. When there are multiple PTFs for

a procedure, it is possible that the location set for some data is (sheap@C1, 0, 0) in

one PTF but the location set for the same data is (x, 0, 0) (i.e., local) in another PTF.

Namely, the data is allocated on shared region in one calling context and the data is

allocated on private region in another calling context. In this case, the access to the

data is considered a shared one and the cache-management routine for the access is

inserted. This approach works correctly because at run-time the cache-management

52 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

routines check whether the data is in the shared-memory range at run-time. If the

data is not in the shared-memory range, the cache-management routines do nothing

at run-time.

Shared-access detection mechanisms described in this section have been imple-

mented fully in the RCOP. The RCOP inserts cache-coherence management routines

according to the target DSM systems:

1. ADSM/SSS–CORE system

Consistency-management routines are inserted after write-accesses that may use

shared-address values (i.e., return values of G MALLOC).

2. UDSM/SSS–CORE system

Consistency-management routines are inserted as in the ADSM/SSS–CORE

system, and checking routines are inserted before read-accesses 3 that may use

shared-address values (i.e., return values of G MALLOC).

The RCOP output codes for the code used in the previous example are as follows

(They are further optimized in successive optimization passes). The write-access to

x[i] are considered to include the read-access x[i]. Therefore, the corresponding

checking routine R((unsigned)&x[i],sizeof(double)) is inserted.

��������	

��	�����������

������������������
�

���������
������
�� ��!

�"	#�$���%�

����������	
�����

�������	�����

�

&

��������	

��	�����������

������������������
�

���������
������
�� ��!

����������	
�����

�������	�����

�

�"	#�$���%�

����������	
�����

�������	�����

�

&

��������	���
��� ��������	���
���

Figure 3.12: Output codes for first pass.

3Write accesses are considered to include read accesses because the cache must be fetched before it is

written to.

3.6. SHARED-READ OPTIMIZATION METHODS 53

3.6 Shared-Read Optimization Methods

This section describes shared-read optimization methods using the LRC model. The

summary of shared-accesses, called the shared-access set is calculated interprocedu-

rally by using interval analysis [15] to solve redundancy elimination dataflow prob-

lems.

3.6.1 Remove Redundant Checking Routines

With the LRC model, consistency is enforced only at an acquire (see Figure 2.3 in

Chapter 2). Any shared data accessed after the acquire a1 and before the following

acquire a2 can be fetched immediately after a1 because the fetched data is never inval-

idated before it is actually accessed. The checking routines can be fetched anywhere

after a1 and before the corresponding load instruction. Cache-miss latency is reduced

by issuing check codes as far before the corresponding load instruction as possible.

This flexibility makes it easy to remove redundant check codes.

For example, consider the code segment shown in Figure 3.13. Suppose that

a[ii][jj] is shared and its type is double. Checking routines can be inserted

immediately in front of both assignments4, but the checking routine within the con-

ditional becomes redundant if we place the second checking routine before the condi-

tional. This redundant code can then be eliminated.

Redundancy Elimination Algorithm

This optimization can be formalized as the redundancy elimination [21, 64] for check-

ing routines. Here, a statement in a procedure is represented by i, and i is considered

to be a node in a CFG of the procedure. For simplicity, we fix one shared read whose

address is a and size is s. From the results of the points-to analysis, the following

logical constants are obtained for each i:

COMP(i) statement i issues a shared read whose address is a and whose size

is s

4A checking routine is denoted byR.

54 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

���������

�	
�������������

�	
����������������

����������

����������	
����������
�

�	
�������������

�

����������	
����������
�

�	
����������������

����������	
 ����������
�

�����������

�	
�������������

�

�	
����������������

��������	
�

���������
	����������

�������
	����	
�

�����
	���	
�

����������������������������

�
���	��������
	��	�����
��������

Figure 3.13: Example of code generation (1).

3.6. SHARED-READ OPTIMIZATION METHODS 55

TRANS(i) statement i propagates information about the shared read above

and below

TRANS(i) is false when i is a synchronization primitive or the statement modifies

the parameters of the checking routine. The following logical dataflow variables are

calculated from these constants:

Availability The shared read is issued in all paths that precede i.

Anticipatability The shared read is issued in all paths that succeed i.

The number of checking routines is minimized by placing them only where

• a shared read is anticipatable,

• a shared read is not anticipatable in one of the preceding paths or the trans-

parency of one is false in one of the preceding paths, and

• a shared read is not available.

Anticipatability before and after execution of statement i is represented here as

ANTIN(i) and ANTOUT(i). Similarly, availability is represented as AVIN(i) and

AVOUT(i). INSERT(i) is a variable meaning that the checking routine is actually

placed before i. Variables are calculated by using the dataflow equations shown in

Figure 3.14, where pred(i) and succ(i) represent sets of predecessors and successors of

i. The above constraints about optimal placement simplify the dataflow equations to

a combination of uni-directional equations: the calculations of ANTIN and ANTOUT

are backward dataflow problems and the calculations of AVIN, AVOUT and INSERT

are forward dataflow problems. Each problem is essentially equal to global common

subexpression elimination problem, and it is monotone dataflow problem.

Figure 3.15 shows an example of what is obtained when the dataflow equations

in Figure 3.14 are applied to the code segment in Figure 3.13. The values of logical

dataflow variables and constants are listed in the table in Figure 3.15. When the

checking routine is fixed as R((unsigned)&a[ii][jj],sizeof(double)), the

local dataflow properties COMP and TRANS are obtained for each node. All the

56 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

ANTOUT(i) =
∏

s∈succ(i)

ANTIN(s)

ANTIN(i) = COMP(i) + TRANS(i) · ANTOUT(i)

AVIN(i) =
∏

p∈pred(i)

AVOUT(p)

AVOUT(i) = (COMP(i) + AVIN(i)) · TRANS(i)

INSERT(i) = ANTIN(i) · ¬
(∏
p∈pred(i)

(TRANS(p) · ANTIN(p))
)
· ¬AVIN(i) (3.1)

Figure 3.14: Dataflow equations used to remove redundant check routines.

TRANS are true. ANTIN, ANTOUT are calculated by a CFG traversal in post order

(3→2→1). ANTIN(3) = true and ANTIN(2) = true yield ANTOUT(1) = true.

Hence, ANTIN(1) = true. AVIN and AVOUT, on the other hand, are calculated

by a CFG traversal in reverse post order (i.e., in interval order: 1→2→3). Lastly,

INSERT is calculated using the values computed above, and only INSERT(1) is found

to be true.

����

�������	��������

������
�	��������

n1

n2

n3

ANTOUT/ANTIN

AVIN/AVOUT, INSERT

Node No.→ 1 2 3

Property

↓
COMP T T

TRANS T T T

ANTIN T T T

ANTOUT T T

AVIN

AVOUT T T

INSERT T

Figure 3.15: Solution of dataflow equations described in Figure 3.14 (1).

3.6. SHARED-READ OPTIMIZATION METHODS 57

The TRANS in
∏
term of INSERT equation (eq. 3.1) seems to be redundant, but

it is necessary for correct insertion when shared read and synchronization primitive

are issued at the same node. The reason is explained here using the example shown

��������	

�������

����������	

��������	
�

��������

����������	
�

n1

n2

n3
ANTOUT/ANTIN

AVIN/AVOUT, INSERT

Node No.→ 1 2 3

Property

↓
COMP T T

TRANS T

ANTIN T T T

ANTOUT T T

AVIN

AVOUT

INSERT T T

Figure 3.16: Solution of dataflow equation described in Figure 3.14 (2).

in Figure 3.16. Suppose that A[i] is shared and its type is integer. A shared

read is issued at both the LOCK operation and the UNLOCK operation. The checking

routine R((unsigned)&a[i],sizeof(integer)) must be inserted before both synchroniza-

tion primitives. This is why A[i] may become invalid after the LOCK (i.e., acquire)

operation and the checking routine must be inserted before using the value A[i] (the

UNLOCK operation).

Local dataflow properties COMP and TRANS are obtained for each node.

TRANS(1) is false and COMP(1) is true. TRANS(3) is false and COMP(3) is

true. ANTIN and ANTOUT are calculated by a CFG traversal in post order, whereas

AVIN and AVOUT are calculated by a CFG traversal in interval order. AVOUT(1)

and AVOUT(3) become false because of the term TRANS. Hence, all the AVIN

are false. Lastly, INSERT is calculated using the values computed above, and

58 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

TRANS(1) = false is found to make INSERT(2) = true as follows:

INSERT(2) = ANTIN(2) · ¬(TRANS(1) · ANTIN(1)) · ¬AVIN(1)

= true · ¬(false · true) · ¬false

= true

These examples are solved by using a single traversal in reverse-topological order

and a single traversal in topological order because the CFG is acyclic. In practice,

there are many cycles (i.e., loop structures) in the CFG.When there are many cycles in

the CFG, The redundancy-elimination dataflow equations must be solved efficiently.

The next subsection describes the efficient methods.

3.6.2 Merge Multiple Checking Routines by Using Loop Structures

Up to now, we have fixed one shared read. But in practice, there are many shared

reads in the program. Calculating dataflow equations for each shared read would

make the compilation time long. From the viewpoint of compilation efficiency, it

is appropriate to handle multiple checking routines at the same time. Moreover,

handling multiple checking routines results in various optimizations described in this

subsection.

An effective way to reduce checking overhead is to batch together the checking

routines for multiple shared reads. For instance, consider the code fragments shown

in Figure 3.17. Suppose b is a shared pointer. It is correct to insert a checking routine

into the innermost loop, but by using loop index information, the checking routines

can be merged. In this way, loop-index information is important. The optimizing

compiler, therefore, associates checking routines with loop-index information. That

is, a sequence of checking routines is represented as a shared-access set. This set

is a tuple (f, s, C), where f and s are arguments of each checking routine and C
corresponds to a set of inequalities representing the enclosing loops.

3.6. SHARED-READ OPTIMIZATION METHODS 59

���������	
�����

����������������

���������	
�������

����������	
������
�

����������������

�

����������	
�����
�

���������	
�������

����������������

�

��������	
�

����������������������

����������������������������

�
���	��������
	��	�����
��������

�������
	���	
�

�����
	���	
�

Figure 3.17: Example of code generation (2).

60 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Interval Analysis Technique

COMP(i) is considered as the set of shared reads that statement i issues. A dataflow

variable, including COMP(i), takes a set of checking routines (i.e., a set of shared-

access sets). The logical operations in Figure 3.14 are considered to be set operations.

Immediately after the points-to analysis, each shared-access set includes only one

check routine. That is, s = sizeof(X), C = ∅ where X is the domain type of f .

This approach, however, encounters difficulties when transparency is computed.

This is because transparency cannot be determined before starting the solution of

dataflow equations. For instance, there may be a node i that modifies the parameter

of the checking routine R1 but does not modify the parameter of the checking routine

R2. For this reason, the redundancy elimination dataflow equations are redefined

using shared-access sets.

ANTOUT(i) =
⋂

s∈succ(i)

ANTIN(s)

ANTIN(i) = COMP(i)
⊔

TRANSi[ANTOUT(i)]

AVIN(i) =
⋂

p∈pred(i)

AVOUT(p)

AVOUT(i) = TRANSi[COMP(i)
⊔

AVIN(i)]

INSERT(i) = ANTIN(i)−
(⋂
p∈pred(i)

TRANSp[ANTIN(p)]
)
− AVIN(i)

Figure 3.18: Redundancy elimination dataflow equations using shared-access sets for

checking routines.

Logical operations are substituted for set operations. A logical operation A ·¬B is

substituted for a difference set operation A−B. A−B consists of elements that are

in A and not in B. Logical operations · and
∏

are substituted for the set operation⋂
(intersection). Now, transparency is considered as function. TRANSi[X] of a node

i returns ∅ if i is a synchronization primitive. Otherwise, it returns the subset of X
by eliminating elements of X whose parameters are modified by i. We can define an

3.6. SHARED-READ OPTIMIZATION METHODS 61

identity function � such that ∀X �[X] = X, and we can define a zero function ⊥
such that ∀X ⊥[X] = ∅.

We can also replace a logical operation S1+S2 with S1

⊔
S2, the optimized-union

operation. The optimized-union operation S1

⊔
S2 first computes the union S3 of

S1 and S2. Then, this operation reduces the union by concatenating its elements if

possible. This reduction is called fusion.5

Fusion
Condition 3.6.1 (Fusion) When there are elements (f1(i), s1(i), C1(i)),

(f2(j), s2(j), C2(j)) in the union S3 such that

C1(i) ≡ C2(j) and f1(i) < f2(i) and f2(i)− f1(i) ≤ s1(i),

these two elements are combined into one new element:

(f1(i), s1(i) + s2(i), C1(i)).

C1(i) ≡ C2(j) indicates that the set represented by C1(i) is equal to the set rep-

resented by C2(j). This reduction operation means that we can merge checking

routines originating in different statements in the program. We represent fusion

here by the binary operator “◦”.

For example, consider the following code fragments, and compute ANTIN(n1).

n1:x_r = x2[2 * j];

n2:x_c = x2[2 * j + 1];

Suppose x2 points to a shared address and its domain type is double. Then

COMP(n1) = {R1} and COMP(n2) = {R2}, where

R1 = ((unsigned)&x2[2 ∗ j], 8, ∅), R2 = ((unsigned)&x2[2 ∗ j + 1], 8, ∅).

We find that TRNASn1 = TRANSn2 = �. Suppose that ANTOUT(n2) = ∅.

5Its name comes from its similarity to loop transformation.

62 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Then ANTIN(n2) is {R2} because

ANTIN(n2) = COMP(n2)
⊔

TRANSn2[ANTOUT(n2)]

= {R2}
⊔

�[∅]

= {R2}
⊔

∅

= {R2}.

Therefore, ANTOUT(n1) = ANTIN(n2) = {R2}. ANTIN(n1) is computed
as follows:

ANTIN(n1) = COMP(n1)
⊔

TRANSn1[ANTOUT(n1)]

= {R1}
⊔

�[{R2}]

= {R1}
⊔

{R2}.

When computing {R1}
⊔
{R2}, we first create {R1}

⋃
{R2} = {R1, R2} and

we find that

(unsigned)&x2[2*j] < (unsigned)&x2[2*j+1] and

(unsigned)&x2[2*j+1]− (unsigned)&x2[2*j] = 8 ≤ 8.

This indicates that R1 and R2 satisfies Condition 3.6.1, and thus can be com-

bined into a new R′:

R1 ◦R2 → R′ = ((unsigned)&x2[2 ∗ j], 16, ∅).

That is, {R1}
⊔

{R2} = {R′}. Hence, ANTIN(n1) = {R′}.

Consider the following example. R1 = ((unsigned)&x2[2 ∗ i], 8, 0 ≤ i <

n) and R2 = ((unsigned)&x2[2 ∗ j + 1], 8, 0 ≤ j < n). Let us compute

{R1}
⊔

{R2}.

We find {0 ≤ j < n} ≡ {0 ≤ i < n}, i.e., C1(i) ≡ C2(j). Further, f1(i)(=

(unsigned)&x2[2∗i]) < f2(i)(= (unsigned)&x2[2∗i+1]) and f2(i)−f1(i) =

8 ≤ s1(i) = 8. Therefore we obtain

R1 ◦R2 → ((unsigned)&x2[2 ∗ i], 16, 0 ≤ i < n).

3.6. SHARED-READ OPTIMIZATION METHODS 63

In practice, Condition 3.6.1 is unnecessarily strict: checking routines originating

in different statements in the program can be merged more aggressively. All

the data in a block is fetched at a cache-miss and is kept coherent as a unit.

Therefore, it is important whether or not the multiple shared reads are issued

onto data in the same block. Checking routines issued onto neighbor regions can

be fused because it is likely that the corresponding data is in the same block.

Regions are considered as neighbor when the distance between the regions is

smaller than the cache-block size.

(Software) Cache block

R(p,4); R(q,4); R(p, q-p+4)

p q p q
Fused region

Figure 3.19: Example of fusion operation.

The Condition 3.6.1 is relaxed as follows.

Condition 3.6.2 (Fusion) When there are elements (f1(i), s1(i), C1(i)),

(f2(j), s2(j), C2(j)) in the union S3 such that

C1 ≡ C2 and f1 < f2 and

f2 − f1 ≤ s1 or f2 − f1 ≤ block size + s1,

these two elements are combined into one new element:

(f1, f2 − f1 + s2, C1).

Figure 3.19 shows an example of fusion using this relaxed condition.

Even if two shared locations are neighbor, they may not be in the same cache-

block. The fused region may cover the multiple caches. The optimizing compiler

takes no account of this situation because this situation is detected dynamically

and handled properly in the cache-state-checking routine at run-time. It is

64 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

important to note that the overheads for fused codes are not larger than those

for original codes. This is because the fused region does not cover the cache that

is not really accessed. Furthermore, the number of cache routines is reduced. In

fused codes, state-checks of multiple caches are executed consecutively in one

routine. Hence, the locality of references is improved.

There are many conditions that enable fusion. For example,

Condition 3.6.3 (Fusion) When there are elements (f1, s1, C1), (f2, s2, C2) in

the union S3 such that

f1 = f2 and s1 = s2 and C1 ∪ C2 is represented as a set of explicit inequalities,

these two elements are combined into one new element:

(f1, s1, C1 ∪ C2).

Explicit inequality for a integer variable v means min ≤ v < max. Consider

R1 = ((unsigned)&a[n], 8, ∅) and R2 = ((unsigned)&a[i], 8, 0 ≤ i < n).

Let us compute {R1}
⊔

{R2}. We consider R1 as ((unsigned)&a[i], 8, i = n).

Therefore R1 and R2 satisfy Condition 3.3 and are combined into R3.

R1 ◦R2 = R3 = ((unsigned)&a[2 ∗ i], 8, 0 ≤ i < n ∪ i = n)

= ((unsigned)&a[2 ∗ i], 8, 0 ≤ i ≤ n)

The interval analysis framework [15, 22] is used to calculate the dataflow equations

shown in Figure 3.18 efficiently. After COMP is computed locally for each node in the

CFG, the terms ANTIN, ANTOUT and TRANS are computed by interval analysis.

Then the terms AVIN, AVOUT are computed by interval analysis. Finally, INSERT

is computed by using the above values. In interval analysis, the CFG is represented

hierarchically with loop structures and the loop summary (i.e., the dataflow effect of

the cycle) needs to be computed efficiently.

Interval Terminology

This section introduces interval terminology useful in explaining compiling techniques.

For a back edge (m,n) in a flow multigraph G, the nodes and edges belonging to

forward paths from n to m form the strongly connected region STR(m,n). The set

3.6. SHARED-READ OPTIMIZATION METHODS 65

B(h) consists of back edges whose target node is h. For each edge (l, h), STR(l, h)

is defined. the union of the strongly connected region defined by B(h) is considered

to be as an interval region I whose header is h [15]. The set of l is referred to as

Latches(I). Assume that G is reducible: that is, that the header h is the only entry

node of the interval I [4]. Therefore, h dominates every nodes in the interval I.

Intervals can be nested. An interval I can be a subinterval of interval J . An

interval that is not a subinterval of any interval is an outermost interval. An interval

that does not contain any subintervals is an innermost interval. The exit edge of an

interval I is an edge that is (m,n) such that I contains m but does not contain n. A

node m is called as an exit node of I, and the set of all m is Exits(I).

Interval analysis consists of two phases: the elimination phase and the propagation

phase. The elimination phase evaluates the dataflow effects of all cycles in a CFG G

that originate at header nodes. The propagation phase then solves for each node of

G by traversing G in a single course. 6

header

Interval �

exit

header

After computing
dataflow effects of �

Reduce

Figure 3.20: Reduction of interval with its header.

1. The elimination phase

This process is executed from innermost intervals to outermost intervals by

traversing G in post order. If the header h of an interval I is encountered, the

6Interval order traversal for forward dataflow problems and post order traversal for backward dataflow

problems.

66 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

dataflow effects of I (i.e., of all paths from h to each exit node) are computed.

The effects are referred to here as an interval summary or a loop summary.

After the interval summary is computed, I is reduced with h.

First, the dataflow effects of one cycle in the interval I are computed as follows.

Iteration summary

• Anticipatability

The interval I is traversed in post order of I. That is, anticipatability is

computed along the backward path, ignoring the outside effects of I.

For each latch node l, we can consider ANTOUT(l) to be ∅. For each

node n (other than l), we can compute ANTOUT(n) by using the antic-

ipatability of the successor node s (ANTIN(s)). And for each exit edge

(in, out), we can ignore the value of ANTIN(out). That is, we can compute

as follows:

ANTOUT(n) =
⋂

s∈succ(n)
s∈I

ANTIN(s)

When n modifies induction variables, TRANSn is considered as to be �. 7

ANTIN(I1) is defined as ANTIN(h) (h is the header). I1 means one cycle

in the interval (i.e., one iteration).

If there are synchronization primitives in I, we can consider TRANSI1 to

be ⊥. TRANSI1 records the list of assigned locations in I.

• Availability

The interval I is traversed in interval order of I. That is, availability is

computed along the forward path, ignoring the outside effects of I.

7Shared-read operations cannot be optimized using continuous variables of a loop. The initial-values and

final-values of these variables are available only after the loop is actually executed, while checking routines

are executed before the loop.

3.6. SHARED-READ OPTIMIZATION METHODS 67

For the first visited node h (i.e., header node), we can consider AVIN(h) to

be ∅. For each node n (other than h), we can compute AVIN(n) by using

the availability of the previous node p (AVOUT(p)).

When n modifies induction variables, TRANSn is considered as �.

AVOUT(I1) is defined as
⋂

l∈Latches(I)

AVOUT(l).

Interval summary

Figure 3.21 shows an example of computing an interval summary (anticipata-

���������	
�����

�����������

�

Anticipatability of Interval (�)

�����������	�

ANTIN(
):
((unsigned)&X[i],4,�)

��������		

ANTIN(
):
((unsigned)&X[i],4,0�i<n)

1 *

��shared array of int

Figure 3.21: Computing interval summary (anticipatability).

bility in this example). The iteration summary (i.e., one cycle summary) of

anticipatability ANTIN(I1) is computed as ((unsigned)&x[i], 4, ∅). The ef-
fect of the entire loop is computed by reflecting the loop information to the

ANTIN(I1). This is done by adding the loop index information (i.e., a set of

68 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

inequalities) to the iteration summary as follows.

{((unsigned)&x[i], 4, ∅)} � {0 ≤ i < n}

= {((unsigned)&x[i], 4, {0 ≤ i < n})}

{((unsigned)&x[i], 4, {0 ≤ i < n})} is considered to be the interval (i.e.,

loop) summary of anticipatability.

In this way are computed the dataflow effects of n cycles in the interval I, where

n is the number of iterations. n may be zero or not determined explicitly. In

general, n depends on the exit nodes. For each exit node e are computed the ef-

fects of all the paths within I from h to e. This is done by adding
∏

e∈Exits(I) Ch �→e

to shared-access sets in the iteration summary. Ch �→e corresponds to a set of in-

equalities representing the set of all paths within I from the header h to the e.

When the set of all the paths within I from the header h to the e cannot be ex-

pressed as a set of inequalities, the summary cannot be propagated outward. In

this case, Ch �→e is considered as ∅. Hence,
∏

e∈Exits(I) Ch �→e = ∅, and the interval
summary is considered to be ∅.

The process of adding a set of inequalities (C) to a set of shared-access sets (S)
is denoted here as S � C. This process returns the ∅ when C is ∅. Otherwise
it returns the S whose elements include C.

The reflective, transitive summaries of anticipatability and availability in I are

referred to here as ANTIN(I∗) and AVOUT(I∗) and are defined as follows:

ANTIN(I∗) = ANTIN(I1) � (
∏

e∈Exits(I)

Ch �→e)

AVOUT(I∗) = AVOUT(I1) � (
∏

e∈Exits(I)

Ch �→e)

TRANSI∗ is defined as TRANSI1. It is the reflective, transitive summary of the

transparency in I.

Consider the example shown in Figure 3.22. Suppose that u is a shared array

of double. The interval (loop) J has an induction variable j. ANTIN(J1) and

3.6. SHARED-READ OPTIMIZATION METHODS 69

...

n1 = 1<<q;

base = n1-1;

for (j=0; j<n1; j = j + 1) {

if (base+j > rootN-1) {

return;

}

u[2*(base+j)] = cos(2.0*PI*j/(2*n1));

u[2*(base+j)+1] = -sin(2.0*PI*j/(2*n1));

}

...

Figure 3.22: Sample loop with two exits.

AVOUT(J1) are computed as follows:

ANTIN(J1) = AVOUT(J1) = {R1}
⊔

{R2}

= {R3}

whereR1 = ((unsigned)&u[2 ∗ (base + j)], 8, ∅)

R2 = ((unsigned)&u[2 ∗ (base+ j) + 1], 8, ∅)

R3 = R1 ◦ R2 = ((unsigned)&u[2 ∗ (base+ j)], 16, ∅)

��

�

�

Interval �

�������

�������	
����
������
������������	
��
���

����

��

��

Figure 3.23: CFG of sample loop shown in Figure 3.22.

70 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

The interval J has two exit nodes e1 and h. Ch �→h = {0 ≤ j < n1} and

Ch �→e1 = {0 ≤ j and base + j ≤ rootN − 1}.

Ch �→e1

⋂
Ch �→h = {0 ≤ j < n1}

⋂
{0 ≤ j and base + j ≤ rootN − 1}

= {0 ≤ j < n1}
⋂

{0 ≤ j < rootN − 1− base+ 1}

= {0 ≤ j < Min(n1, rootN − base)}

Hence,

ANTIN(J∗) = ANTIN(J1) � (
∏

e∈Exits(J)

Ch �→e)

= {R3} � {0 ≤ j < Min(n1, rootN − base)}

= {((unsigned)&u[2 ∗ (base+ j)], 16, {0 ≤ j < Min(n1, rootN − base)}

= {R3′}.

Similarly AVOUT(J∗) = {R3′}.

Two optimizing methods are used to optimize shared-access sets when inequal-

ities representing the loop are added.

CoalescingThis is applicable when checking routines onto contiguous lo-

cations are issued in a loop. The name “coalescing” comes from

its similarity to the loop transformation. Suppose the shared-access

set R = (f(j), s, C(j)) and suppose that the index variable vec-

tor j of the loop has the increment (or decrement) value vector c.

Condition 3.6.4 (Coalescing) When f(j + c)− f(j)(= δ) ≤ s, R can be

replaced by

R′ = (f(j0), δ ·(n− 1) + s, C(j)− I(j))

such that n is the number of iterations and j0 consists of the minimum

values of j and I(j) is a set of inequalities with j.

3.6. SHARED-READ OPTIMIZATION METHODS 71

For the example shown in Figure 3.17,

R = ((unsigned)&b[i], 1, {0 ≤ i < n})→ R′ = ((unsigned)b, n, ∅).

One benefit of this code-generation method is that the instruction over-

heads of the checking routines are reduced because the check is elevated

from the loop. Another is that the run-time system can use the size infor-

mation for message vectorization. The coalesced region may cover multiple

caches. This case is detected dynamically at run-time and handled prop-

erly in the cache-state checking routine at run-time.

In practice, the above Condition 3.6.4 is tight. It is relaxed as follows.

Condition 3.6.5 (Coalescing) When f(j + c) − f(j)(= δ) ≤ s or δ ≤
block size + s, R can be replaced by

R′ = (f(j0), δ ·(n− 1) + s, C(j)− I(j))

such that n is the number of iterations and j0 consists of the minimum

values of j and I(j) is a set of inequalities with j.

(Software) cache block

R(&p[i].F, 4, 0�i<n)

p[0].F

• • •

p[n-1].F p[n].F

• • •

p: shared array of structure S
� = sizeof (S) � cache-block size

Coalesced region
R(&p[0].F, (n-1)*sizeof (S)+4, �)

Figure 3.24: Example of coalescing operation.

Consider the following example.

72 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

typedef struct mol_dummy

{

double VM[3];

double F[7 + 2][3][3];

}

molecule_type;

Suppose that VAR is a shared-array whose element type is molecule type

and the block size of the software-cache is 1024 bytes. When an inter-

val summary yields R = ((unsigned)V AR[mol].V M, 24, 0 ≤ mol <

MOL), the computation is as follows.

δ =(unsigned)V AR[mol + 1].V M − (unsigned)V AR[mol].V M

=sizeof (molecule type)

=672 < block size− 24 = 1000.

Therefore, we find that the Condition 3.6.5 is satisfied, and R can be

replaced by

R′ = ((unsigned)V AR, 672·MOL− 648, ∅).

Redundant index elimination Suppose the shared-access setR = (f(j), s(j), C(j))
and suppose that j is the index vector of a loop.

Condition 3.6.6 (Redundant index elimination) When ∀j ∃j0 ∈ C(j)

f(j0) ≤ f(j) + s(j) ≤ f(j0) + s(j0),

the index variable vector j becomes redundant. Therefore, inequalities

with j (I(j)) are removed from C(j).

R → R′ = (f(j0), s(j0), C(j)− I(j))
Consider the following example.

...

for(j=0; j<N; j++){

3.6. SHARED-READ OPTIMIZATION METHODS 73

c[j] = a[i]*b[j];

}

...

Suppose that a is in the shared-region and its element type is int. The

loop summary generates {R} where

R = ((unsigned)&a[i], 4, 0 ≤ j < N)

(unsigned)&a[i] and 4 are loop-invariant. Therefore, the above Con-

dition 3.6.6 is satisfied. As a result, the loop summary is {R′} where

R′ = ((unsigned)&a[i], 4, ∅).

Consider another example. Suppose that an array c is in the shared-region

and that its element type is int.

for(i=0;i<N;i++)

for(j=0;j<N-i;j++)

... = c[i+j]

}
= J

 = I

When the summary of J is computed, R1 is coalesced into R1′:

R1 = ((unsigned)&c[i + j], 4, 0 ≤ j < N − i)

R1′ = ((unsigned)&c[i], 4· (N − i), ∅)

Calculation of the summary of I produces {R2} such that

R2 = ((unsigned)&c[i], 4· (N − i), 0 ≤ i < N).

We find

(unsigned)&c[i] + 4·(N − i) = (unsigned)c+ 4·N,

since (unsigned)&c[i] = (unsigned)c+ 4 ∗ i.

74 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Therefore, we find that the Condition 3.6.6 is satisfied because

f(0) = (unsigned)c ≤ f(i) + s(i)

= (unsigned)c+ 4·N = f(0) + s(0).

Hence, we obtain

R2 → R2′ = ((unsigned)c, 4·N, ∅).

This elimination is also applicable to nonlinear but monotonous expres-

sions. For example, in a shared-read set

R = (x, 2 ∗ 2q ∗ (N/2q), {1 ≤ q ≤ M}),

we can eliminate q by using the monotonicity of 2q and Q∗(N/Q) to obtain

R′ = (x, 4 ∗ (N/2), ∅).

Even if these optimization methods cannot be performed, there is still some

value in computing the interval summary. The summary is propagated outward

containing inequalities representing index variables of the loop. This process

corresponds to the fission of the loop. That is, two loops are generated. One

is the loop checking cache-states and the other is the loop reading the shared

data actually and computing. Of course, fission does not reduce the number of

cache-state checking routines. But it does improve the locality of reference.

Reduction

When an interval I is reduced to the header node h, each exit edge (i, e) is

substituted for (h, e). The interval I is handled as a single CFG node h when

the interval summary of the outer interval containing the interval I is computed.

On that occasion, the anticipatability of the h is computed as follows:

ANTOUT(h) =
⋂

e∈Exits(I)

ANTIN(e)

ANTIN(h) = ANTIN(I∗) + TRANSI∗ [ANTOUT(h)]

3.6. SHARED-READ OPTIMIZATION METHODS 75

ANTIN(h) is recorded as ANTIN∗(h). The availability of the h is computed as

follows:

AVIN(h) =
⋂

s∈pred(h)
s/∈I

AVOUT(s)

AVOUT(h) = AVOUT(I∗) + TRANSI∗ [AVIN(h)]

AVOUT(h) is recorded as AVOUT∗(h).

2. The propagation phase

For the original CFG G (i.e., not a reduced one), anticipatability and trans-

parency are computed in the course of a single post order traversal. Imme-

diately after the node n of interval I is evaluated, we redefine ANTIN(n) as

ANTIN(n)
⊔
ANTIN∗(h). Availability is computed in the course of a single in-

terval order for the original CFG G. Immediately after the header node h of an

interval I is evaluated, we redefine AVOUT(h) as AVOUT(h)
⊔
AVOUT∗(h).

Interprocedural Approach

Up to now, procedure-calls have not been taken into account here. The procedure

call, however, is also important for the efficient code generation. Our approach to

interprocedural calculation of redundancy elimination dataflow equations is as follows.

• The transparency of the callee must be known to the call site in the caller

procedure.

– Synchronization information

The optimizing compiler must inform the caller of whether does or does

not the callee contain synchronization primitives by analyzing the callee

procedure.

– Modification information

Whether or not the callee modifies the parameters of the shared-access sets

can be determined by using the result of points-to analysis. This is done

76 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

by checking the PTF of the callee. There is no need to analyze the callee

procedure for this purpose.

• ANTIN at the entrance of the callee procedure is considered to be the COMP

at the call site in the caller procedure, and there is no need to map ANTOUT

at the call site in the caller to the ANTOUT at the exit of the callee.

• Availability is used only to determine whether the placement of the checking

routine is safe. A safe placement is one for which, along any path, the number

of checking routines is not increased by optimization. AVIN and AVOUT are

therefore computed intraprocedurally.

When we take this approach, there is no need to make calling-context information

known to the callee procedure, and the procedure summaries (TRANS and ANTIN

at the entrance) are computed only once.

If we want to compute dataflow equations interprocedurally, we must handle a

procedure that is called recursively or called through pointers. We refer to such

a procedure an open procedure [20]. An open procedure does not return precise

information.

The methods for solving dataflow equations interprocedurally are as follows.

1. For each statement i of each procedure, Whether i does or does not issue a

shared read (i.e., COMP(i)) is calculated by using the results of points-to

analysis, and COMP(call site) is considered as ∅. Whether i is or is not a

synchronization primitive is computed, and TRANSi becomes ⊥ when i is a

synchronization primitive.

2. The CFG is extended with the Call Graph. The Call Graph is decomposed into

strongly connected regions. It can be, therefore, considered to be acyclic. The

optimizing compiler makes a bottom-up traversal of the Call Graph. For each

region (r) of the Call Graph, it performs the following process.

• When r is a singleton, The caller of r must be informed of the synchroniza-

tion information. If there is a node i in the CFG of r such that TRANSi

is ⊥, we set TRANScall site in the caller as ⊥.

3.6. SHARED-READ OPTIMIZATION METHODS 77

Then, the following evaluation procedure EvalProc(r) is performed.

78 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

����

�

��

����	

Caller

����

�

��

��

Callee

Call Site

Procedure Summary

�����

�����

Figure 3.25: EvalProc process.

[EvalProc(r)]

Anticipatability and transparency are first computed by using the in-

terval analysis framework. A call site (cs) that invokes s may be en-

countered. Because the Call Graph is traversed in the bottom-up man-

ner, EvalProc(s) has already been performed. That is, TRANScs and

COMP(cs) have already been computed. When TRANScs[ANTOUT(cs)]

is computed, the optimizing compiler investigates only the final points-to

functions recorded in PTFs of the callee s and checks whether or not the

parameters of elements in ANTOUT(cs) are modified in the s.

The availability is then computed by using the interval analysis frame-

work. TRANScs[AVIN(cs)] is calculated as mentioned above. Finally,

optimal placement of the checking routine (INSERT) is computed ac-

cording to the equation shown in Figure 3.18. INSERT at entrance node

e of the CFG of r cannot be computed without using the ANTIN value

at a predecessor of e (denoted here as p).

ANTIN(p) =

{
∅ if r is an open procedure

ANTIN(e) else

The anticipatability information is then made known to the call site. If r is

not an open procedure (i.e., r is not called through a function pointer and

r is not called by r itself), ANTIN(e) is reflected to the COMP(call site)

of the caller. At this time, each element of ANTIN(e) is translated back to

the caller’s name space. Although the lower bounds and the upper bounds

3.6. SHARED-READ OPTIMIZATION METHODS 79

of index variables in shared-access sets are translated, the index variables

are the same.

• When r is not a singleton, the procedures in the region r are mutually

recursive.

First, we make the synchronization information known to the callers not

only in the region r but also out the region of r. For each node s in r, the

optimizing compiler checks for a node i in the CFG of s such that TRANSi

is ⊥. If such a node is found, TRANScall site is set to ⊥ for all the call sites

invoking the procedures in r.

Second, we perform EvalProc (s) for each node s in r.

In this case, the anticipatability information cannot be propagated to the

caller.

Consider the example shown in Figure 3.26. COMP and TRANS are first com-

puted for each CFG. For the CFG of f, COMP[s1] = {R1, R2}8.

R1 = ((unsigned)&a[i], 8, ∅)

R2 = ((unsigned)&b[i], 8, ∅)

The call graph is acyclic. Therefore, EvalProc(f) is computed first.

EvalProc(f)

Redundancy elimination dataflow equations are solved by using the interval anal-

ysis. First, anticipatability and transparency are computed. The loop with index

variable i (interval I) is summarized. At the elimination phase, the summary is

obtained as follows. ANTIN[I∗] = {R1′, R2′} where

((unsigned)&a[i], 8, 0 ≤ i < n) → R1′ = ((unsigned)a, 8 ∗ n, ∅)

((unsigned)&b[i], 8, 0 ≤ i < n)→ R2′ = ((unsigned)b, 8 ∗ n, ∅)

Hence, at the propagation phase, ANTIN[entrance] = {R1′, R2′} is obtained. Be-

cause f is not an open procedure, ANTIN[p] = {R1′, R2′}. Second, availability are
8sizeof(double) is considered here to be 8 bytes

80 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

double *A,*B,*C;

int N=100;

double alpha = 0.3;

main ()

{

a1:A = G_MALLOC(100*sizeof(double));

a2:B = G_MALLOC(100*sizeof(double));

a3:C = malloc(100*sizeof(double));

c1:f(A, B, C, N);

}

void f(double *a, double *b, double *c,

int n)

{

for (i=0;i<n;i++)

s1:c[i] = a[i]+alpha*b[i];

}

Figure 3.26: Sample code segment.

computed like anticipatability computation. Lastly, optimal placement is obtained

from these computed values. It is found that for each node x, INSERT(x) = ∅.
Because r is not an open procedure, ANTIN[entrance] must be reflected to

COMP[f(A,B,C,N);] of the caller (i.e., main); that is, to COMP[c1] of main.

{R1′, R2′} is translated back to the caller’s name space (Figure 3.27). As a result,

COMP[c1] = {R3, R4}

R3 = ((unsigned)A, 8 ∗N, ∅) R4 = ((unsigned)B, 8 ∗N, ∅)

EvalProc(main)

First, anticipatability and transparency are computed. The call site f(A,

B, C, N) is encountered. COMP[f(A,B,C,N);] has already been computed.

TRANSf(A,B,C,N); is considered as � because the final points-to functions

3.7. SHARED-WRITE OPTIMIZATION METHODS 81

���� �

Call graph

���

��	

��

���

��������������������

��������������������

��������������������

�����������	��������

����������	�
���	
�������
����
�����

Parameter
mappings

���������	�
����
�

Figure 3.27: Apply summary of callee to callsite.

are empty in the procedure f. It is found that TRANSa2[{R3, R4}] = {R3} and

TRANSa1[{R3}] = ∅.
When availability and optimal placement are then computed, it is found that

INSERT(a3) = ANTIN(a3)− TRANSa2[ANTIN(a2)]− AVIN(a2)

= {R3, R4} − {R3} − ∅

= {R4}.

Similarly, INSERT(a2) = {R3}.
These proposed optimization methods described in Section 3.6 are fully imple-

mented in the RCOP, which optimizes shared-read operations in the UDSM/SSS–

CORE system.

3.7 Shared-Write Optimization Methods

This section describes shared-write optimization methods by using the LRC model.

They are similar to shared-read optimization methods. That is,

• Redundant routines for managing cache-consistency are removed.

• Multiple routines for managing cache-consistency are merged by using loop

structures and procedure calls.

82 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

double *A,*B,*C;

int N=100;

double alpha = 0.3;

main ()

{

a1:A = G_MALLOC(100*sizeof(double));

R(A, N * 8);

a2:B = G_MALLOC(100*sizeof(double));

R(B, N * 8);

a3:C = malloc(100*sizeof(double));

c1:f(A, B, C, N);

}

void f(double *a, double *b, double *c,

int n)

{

for (i=0;i<n;i++)

s1:c[i] = a[i]+alpha*b[i];

}

Figure 3.28: Output code of Figure 3.26.

These methods also calculate shared-access sets interprocedurally by using interval

analysis [15] to solve redundancy elimination dataflow equations. The basic approach

is derived from Inagaki’s work [41], but is substantially extended by several techniques

using continuous variables and by having all the functions implemented. Shared-write

optimization methods are explained here being compared with shared-read optimiza-

tion methods.

3.7. SHARED-WRITE OPTIMIZATION METHODS 83

3.7.1 Remove Redundant Consistency-Management Routines

With the LRC model, consistency is enforced only at an acquire (see Figure 2.3 in

Chapter 2). Shared-write operations are not visible to all other processors until a

synchronization variable released in a subsequent operation is acquired by another

processor. A consistency-management routine can, therefore, be placed between the

corresponding store instruction to the subsequent synchronization primitive. This

flexibility makes it easy to remove redundant consistency-management codes.

Redundancy Elimination Algorithm

The redundancy elimination algorithm for consistency-management routines is similar

to that for cache-state checking routines.

COMP(i) indicates that i issues a shared-write. Hence, availability and antici-

patability are defined as follows.

Availability The shared write is issued in all paths that precede i.

Anticipatability The shared write is issued in all paths that succeed i.

INSERT(i) is a variable meaning that the consistency-management routine is actually

placed after i.

The number of consistency-management routines is minimized by placing them

only where,

• a shared-write is available,

• a shared-write is not available in one of the succeeding paths, and

• a shared-write is not anticipatable.

Shared-write and synchronization primitive are assumed to not be issued at the

same node. The redundancy elimination dataflow equations using shared-access sets

are defined as follows. These dataflow equations are also resolved into uni-directional

equations. That is, AVIN and AVOUT are first calculated as forward dataflow prob-

lems. Then, ANTIN, ANTOUT, and INSERT are calculated as backward dataflow

problems.

84 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

ANTOUT(i) =
⋂

s∈succ(i)

ANTIN(s)

ANTIN(i) = COMP(i)
⊔

TRANSi[ANTOUT(i)]

AVIN(i) =
⋂

p∈pred(i)

AVOUT(p)

AVOUT(i) = TRANSi[COMP(i)
⊔

AVIN(i)]

INSERT(i) = AVOUT(i)−
⋂

p∈pred(i)

AVOUT(p)− ANTOUT(i)

Figure 3.29: Redundancy elimination dataflow equations using shared access sets for

consistency-management routines.

In contrast to what is done in the shared-read optimization, availability is mainly

used and anticipatability is computed only to determine whether the placement of

the consistency-management routine is safe.

3.7.2 Merge Multiple Consistency-Management Routines by Using

Loop Structures

An Interval analysis framework is also used to solve the above dataflow equations

efficiently. It is almost the same as the one used in the shared-read optimization.

However, several optimization methods are different from those in the shared-read

optimization:

• Fusion

• Coalescing

These two optimization methods for shared-reads use the relaxed conditions such

as Condition 3.6.2 and Condition 3.6.5. This is because the corresponding checking

routines are merged when multiple shared reads are issued onto neighbor locations.

On the other hand, only when multiple shared writes are issued onto contiguous

locations, can the corresponding consistency-management routines be merged. For

3.7. SHARED-WRITE OPTIMIZATION METHODS 85

that reason, the strict Condition 3.6.2 is used when performing fusion optimization

and the strict Condition 3.6.5 is used when performing coalescing optimization.

The point in shared-write optimization methods is to utilize continuous variables

(see Section 3.4). The final value of a continuous variable in a loop is flow-sensitive.

That is, how many times the continuous variable is incremented (or decremented) is

not known until the loop is actually executed. Suppose that shared writes onto con-

tiguous locations are issued using continuous variables in a loop. Their consistency-

management routines can be coalesced by using continuous variables. The number

of iterations (i.e., n in coalescing Condition 3.6.4) is computed using the final value

of the continuous variable. The coalesced routine is placed after the loop. When

the coalesced routine is executed, the final value has already been computed and the

routine works correctly. In shared-read optimization methods, however, this process

does not work correctly, because the merged checking routine is placed before the

loop.

When shared-write optimizations using continuous variables are taken into ac-

count, the computation of the iteration summary of availability is a little more com-

plicated.

• When the CFG node n modifies the continuous scalar variable v, TRANSn

eliminates the shared-access sets that depend on v and are not issued in the

same basic block b that contains n. That is, shared-access sets s dependent on

v and issued in the b are propagated to the successor of n. At the subsequent

join node, s is further propagated to the successor node.

• When n modifies the continuous array variable and the location of the variable

can be determined, TRANSn is considered as �.

Coalescing optimization using continuous scalar variables is defined as follows.

CoalescingThis is applicable when checking routines onto contiguous locations are

issued in a loop L. Suppose shared-access set W = (f(j), s, C(j, i)) and that

the continuous variable in L, j, has the increment (or decrement) value c and

that i is index variables of L.

86 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Condition 3.7.1 (Coalescing) When f(j + c) − f(j)(= δ) ≤ s and the as-

signment to the location of j dominates or post-dominates the corresponding

shared write, W can be replaced with

W ′ = (f(j0), δ ·(n− 1) + s, C(j, i)− I(j, i))

such that j0 is the minimum values of j used in the shared write, jn is the

maximum values of j used in the shared write, n is the number of iterations

(= jn−j0+1
c

), and I(j, i) is a set of inequalities representing the loop L.

Consider the following loop I.

for (k = 0, i = 0; i < n; i++) {

if (A[i] > 0) {

B[k] = A[i];

k++;

}

}

Suppose B points to a shared address and that its domain type is double. k

is a continuous scalar variable. When computing the interval summaries, one

cycle summaries are obtained as follows.

ANTIN(I1) = ∅

AVOUT(I1) = ((unsigned)&B[k], 8, ∅)

As a result, the interval summaries are obtained as follows.

ANTIN(I∗) = ∅

AVOUT(I∗) = ((unsigned)&B[k], 8, {0 ≤ k, 0 ≤ i < n})

AVOUT(I∗) is further optimized by coalescing. It is found that

• the location of k is loop-invariant,

• f(k + 1, i)− f(k, i) = 8 ≤ 8

3.7. SHARED-WRITE OPTIMIZATION METHODS 87

• assignment to the location of k post-dominates the shared write B[k], and

• the minimum value is 0 and the maximum value is k − 1.

Therefore, it is coalesced as follows.

((unsigned)&B[k], 8, {0 ≤ k, 0 ≤ i < n}) → ((unsigned)B, 8 ∗ k, ∅)

If the target is ADSM/SSS–CORE system, the output code is as follows.

for (k = 0, i = 0; i < n; i++) {

if (A[i] > 0) {

B[k] = A[i];

k++;

}

}

W(B, 8*k);

Figure 3.30: Output code for ADSM/SSS–CORE system.

This optimization is not performed to shared-reads. Therefore, if the target is

UDSM/SSS–CORE system, the output code is obtained as follows.

for (k = 0, i = 0; i < n; i++) {

if (A[i] > 0) {

R(&B[k], 8);

B[k] = A[i];

k++;

}

}

W(B, 8*k);

Figure 3.31: Output code for UDSM/SSS–CORE system.

Consider coalescing optimization using the continuous array variable (shown

in Figure 3.5). The continuous array variable cv is expressed as g(i) where i

88 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

represents an index variable of the loop L. Suppose shared-access set W =

(f(cv), s, C(i)) and that the cv has the increment (or decrement) value c.

Condition 3.7.2 (Coalescing)
When

• the location of a continuous variable cv is loop-dependent (i.e., denoted as
g(i)),

• f(cv + c) − f(cv)(= δ) ≤ s,

• the assignment to the location of cv dominates or post-dominates the corre-
sponding shared-write, and

• max and min such that g(min) ≤ cv(= g(i)) ≤ g(max) can be detected,

W can be replaced with

W ′ = (f(m(j)), δ ·(n(j)− 1) + s, C(i)− I(i) + {min ≤ j ≤ max}})

such that

• m(j) is the minimum value of g(j), M(j) is the maximum value of g(j),

• n(j) is the number of iterations (= M(j)−m(j)+1
c), and

• I(i) is a set of inequalities representing the loop L.

This indicates that the value of g(j) must be stored before the loop-execution

if m(j) and M(j) are to be obtained after the loop-execution.

Consider the following example. Suppose that B is a shared array whose element

type is double and that A is an array whose element type is integer.

for (i = 0; i < n; i++) {

j = (i >> 24) & 255;

B[A[j]++] = z(i,j);

}

The execution model is shown in Figure 3.32. Interval summaries are obtained

3.7. SHARED-WRITE OPTIMIZATION METHODS 89

� �

� � ��� (before the loop)

� � ��� (after the loop)

�

���	

 ���	

�����	

	��������

����������	
�����	�		������

Figure 3.32: Execution model of memory access.

as follows.

AVOUT(I1) = {W}

ANTIN(I1) = ∅

such thatW = ((unsigned)&B[A[j]], 8, {0 ≤ i < n})

We find the following things.

• A[j] is a continuous variable that has the increment value 1.

• (unsigned)&B[A[j]+1]-(unsigned)&B[A[j]] ≤ 4.

• &A[0] ≤ &A[j] ≤ &A[255]. This is because 0 ≤ (i >> 24) & 255 ≤ 255

holds for any i.

Coalescing optimization is performed as follows.

W → ((unsigned)&B[I[k]], 8 ∗ (A[k]− I[k]), {0 ≤ k ≤ 255})

such thatI[k] is the minimum value ofA[k].

i.e.,I[k] represents the value ofA[k] before the loop-execution.

For each k ∈ {0 ≤ k ≤ 255}, the value of A[k] is stored into I[k] before

the loop-execution. Therefore, output code for the ADSM/SSS–CORE system

is as follows.

90 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

for (k = 0; k < 255; k++)

I[k] = A[k];

for (i = 0; i < n; i++) {

j = (i >> 24) & 255;

B[A[j]++] = z(i,j);

}

for (k=0; k < 255; k++)

W(&B[I[k]], 8*(A[k]-I[k]));

The output code for UDSM is as follows.

for (k = 0; k < 255; k++)

I[k] = A[k];

for (i = 0; i < n; i++) {

j = (i >> 24) & 255;

R(&B[A[j]],8);

B[A[j]++] = z(i,j);

}

for (k=0; k < 255; k++)

W(&B[I[k]], 8*(A[k]-I[k]));

These proposed optimization methods described in Section 3.7 are fully im-

plemented in the RCOP, which optimizes shared-write operations both in the

UDSM/SSS–CORE system and ADSM/SSS–CORE system.

3.8 Summary

The purpose of compiler optimization is to generate codes reducing the communica-

tion and instruction overheads of software cache-coherence management. This can

be done by exploiting the application’s semantics (such as loops and procedure calls)

as much as possible by using the relaxed coherence model, interprocedural alias in-

formation and interprocedural redundancy elimination framework based on interval

analysis.

3.8. SUMMARY 91

An optimizing compiler called a “Remote Communication Optimizer”(RCOP) has

thus been developed for shared-memory parallel programs. The RCOP performs

• interprocedural points-to analysis and

• interprocedural shared-access set calculation using interval analysis to solve

redundancy elimination equations.

As a result, the RCOP implements the following optimizations:

• It detects all the shared-accesses precisely.

• It removes redundant cache-coherence management routines

• It merges multiple redundant cache-coherence management routines by utilizing

loop structures and procedure calls.

The RCOP performs shared-write optimizations using continuous variables.

92 CHAPTER 3. COMPILER OPTIMIZATION FOR SOFTWARE CACHE

Chapter 4

Run-Time Optimization for Software

Caching

This chapter describes the run-time optimization for Software DSM. The purpose

of the run-time optimization is to manage cache-coherence efficiently in cache-

management routines and synchronization primitives. The run-time system must

reduce communication overheads and instruction overheads by using the relaxed co-

herence mechanism.

How many times the communication is invoked and the volume of the communica-

tion depend on the cache-coherence protocol. The effects of cache-coherence protocols

that follow LRC model are therefore, first, studied by implementing and experiment-

ing with three protocols described in Section 4.1.

Then, the communication overheads and instruction overheads incurred under the

best protocol are further to be reduced. Because the run-time system needs to handle

both fine-grained communications and coarse-grained communications issued through

compiler-inserted interfaces efficiently, the bulk transfer mechanism provided by the

platform is used for the coarse-grained communications , while as many as possible

of the fine-grained communications whose destination processors are the same are

combined. Remote requests are handled quickly with low overheads by utilizing the

remote invocation mechanism of the user-specified program. This run-time system is

described in Section 4.4.

93

94 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

Although the bulk data transfer mechanism and the remote invocation mechanism

of the user-specified program are used in this thesis, its general applicability is not

lost because they can be implemented with commodity hardware [59].

4.1 Cache-Coherence Protocol

The performance of parallel shared-memory applications written on the same memory

model is considered to be affected by the cache-coherence protocol. Although Adve et

al. [1] compare LRC implementations, little is known about protocol effects when fully

optimized codes run. Three new cache-coherence protocols that implement LRC and

support multiple writers for the codes fully optimized by the compiler are therefore

evaluated [65, 68, 69].

The three protocols –called history-based lazy release consistency (HLRC), soft-

ware emulation of AURC (SAURC), and a hybrid of HLRC and SAURC (HYBRID)–

are described here.

First, the write history of shared-writes is defined as the tuple of the initial address

and the size of the written region. These are the parameters of the consistency-

management routines.

• History-based LRC protocol (HLRC):

This is an implementation of the lazy invalidate protocol [46]. Invalidations

are delayed until copy holders issue acquire operations. HLRC differs from the

TreadMarks implementation [46], in not using a twin/diff mechanism because

of the their large overheads.

1. Write detection:

A compiler-generated consistency-management routine saves the write his-

tory of the shared-write (i.e., the parameters of the routines).

2. Write collection:

By using the write history information, the processor computes the local

write result efficiently when it is necessary (Figure 4.1). The time to

collect the write result is proportional to the amount of the created write

4.1. CACHE-COHERENCE PROTOCOL 95

history. The created write history cannot be discarded without explicit

synchronization, and this means that a large amount of memory is required.

P 1

P 0

Write(A,S)
Acq (l) Rel

Create
WriteHistory
(A,S)

(l)

Acq(l) Read(A)

Compute

by (A,S)
and Send

Apply

Figure 4.1: Example of HLRC protocol.

• Software emulation of AURC protocol [39] (SAURC):

The AURC protocol can be implemented without special hardware support.

It has also been implemented as Home-based LRC [88] which uses twin/diff

mechanism. The implementation in SAURC, however, uses the write-history

mechanism.

1. Write detection:

A compiler-generated consistency-management routine records the write

history of the shared-write. At the release point, the local write result is

propagated to the block-home processor by using the write history infor-

mation (Figure 4.2). After sending the local write result to the block-home

processor, the processor discards the created write history. The block-home

processor discards the received write results after modifying the caches by

using them.

96 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

2. Write collection:

The home-block is always kept up-to-date. The consistency of other copies

is managed as in the lazy invalidate protocol. When the cache-miss occurs,

fetching the whole cache-block from the block-home processor is required.

Write(A,S)Acq (l) Rel

Create
WriteHistory
(A,S)

(l)

Acq(l) Read(A)

P 0

(Home)
Compute

by (A,S)
and Send

Apply

P 1

P 2

Fetch
Page

Discard (A,S)

Discard
(A,S)

Figure 4.2: Example of SAURC protocol.

• HYBRID protocol:

In the HLRC protocol, more than one remote processor may have to be visited

in order to obtain write results at cache-misses. In the SAURC protocol, the

processor has only to visit the block-home processor when there is a cache-

miss, but the whole cache-block must be fetched from the block-home processor.

Thus, in the SAURC protocol, the communication traffic is expected to be

heavier than it is if only the modifications are sent. A hybrid protocol combining

aspects of the HLRC and SAURC protocols is therefore developed.

In HYBRID protocol, when there is a cache-miss, the processor visits the block-

home processor and obtains only the modified data rather than the whole cache-

block.

4.1. CACHE-COHERENCE PROTOCOL 97

1. Write detection:

A compiler-generated consistency-management routine saves the write his-

tory of the shared-write. At the release point the local write result is prop-

agated to the block-home processor by using the write history information.

After sending the local write result, the processor discards the write his-

tory. The block-home processor records the write history included in the

received write results (Figure 4.3).

2. Write collection:

The block-home processor is always kept up-to-date. The consistency of

other copies is managed as in the lazy invalidate protocol. When a cache-

miss occurs, the processor detecting the cache-miss sends its timestamp

to the block-home processor. The block-home processor then sends only

the modified data by using the received timestamp and the recorded write

history information.

Acq(l) Read(A)

Write(A,S)Acq (l) Rel

Create
WriteHistory
(A,S)

(l)

P 0

(Home)

Compute

by (A,S)
and SendApply

P 1

P 2
Apply

Compute

by (A,S)
and Send

Discard
(A,S)

Figure 4.3: Example of HYBRID Protocol

98 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

4.2 Implementation Issues

These three protocols have been evaluated on the run-time system called “RS1”,

and the construction of the RS1 is similar to that of the TreadMarks except for

the twin/diff mechanism. The run-time system must prevent access to outdated

versions of shared data, and TreadMarks does this by using a complicated timestamp

mechanism called vector timestamp [46]. The following paragraph describes the vector

timestamp mechanism that was also used in the RS1.

Vector timestamp mechanism

The execution of each process is divided into intervals, 1 each denoted by an interval

index. Every time processor executes synchronization primitive, an interval index is

incremented so that a new interval starts. Intervals of different processes are partially-

ordered according to the acquire/release relationship.

• Intervals on a single processor are totally ordered by program order.

• An interval on processor p precedes an interval on processor q when the interval

of q begins with the acquire corresponding to the release that concluded the

interval of q.

The partial-order is represented by the vector timestamp assigned to each interval.

The vector timestamp is a vector of timestamps and has each entry for each processor.

The vector timestamp for interval i of processor p is denoted vi
p, which is defined as

follows. If q = p, then vi
p[q] = i. Otherwise, vi

p[q] is equal to the most recent interval

index of processor q that precedes the current interval i of processor p according to the

partial-order. When a cache-block is modified by a local processor, the write-notice is

created associated with the current vector timestamp. A write-notice is an indication

that a cache has been modified during a certain interval.

When processor p acquires a lock from processor q, it sends its current vector

timestamp to q. q then computes write-notices for all intervals included in q’s current

vector timestamp but not in the vector timestamp received from p. After that, q

1They have no relation to the interval analysis described in Chapter 3.

4.3. EMPIRICAL EVALUATION OF PROTOCOL 99

returns to p not only the lock grant message but also its current vector timestamp

and the computed write notices. When processor p receives the lock-grant message,

it computes its new vector as maximum of its previous vector and the vector received

from q and invalidates caches according to the write-notices.

At a cache-miss, the processor detecting the miss puts the associated vector times-

tamp in the cache-miss messages. The processors responding to the request send the

required data and the vector timestamp associated with the cache. The processor

that detected the miss then updates both the cache-block and the associated vector

timestamp.

4.3 Empirical Evaluation of Protocol

The prototypes of the compiler and the above run-time system R1 of UDSM scheme

were implemented on a multicomputer Fujitsu AP1000+[37, 71]. Each node consists

of 50MHz Super SPARC with 20 KB I-cache, 16 KB D-cache and 16MB memory.

The processors are interconnected by a 2-D torus network whose bandwidth is 25

Mbytes/sec per link. Because CellOS on the AP1000+ does not provide signals to

users, request messages from remote processors are serviced through polling mech-

anism. Polls are inserted at every loop backedge and every function call[79]. The

performance of each protocol on three kernels (LU-Contig, Radix, FFT) of SPLASH-

2 [86] is evaluated using 16 nodes. LU-Contig performs blocked LU factorization of

a dense matrix. The problem size is a 256×256 matrix with 16×16 blocks. Radix
performs an integer radix sort. The problem size is 256K keys to be sorted and a

radix of 1024. FFT performs a complex, 1D-FFT computation. The problem size is

16384 complex data points.

Note that in all cases the intraprocedural optimization described in Chapter 3 were

performed. The results are shown in Figure 4.4, 4.5, 4.6. L shows the results when the

HLRC protocol is selected. A shows the results when the SAURC protocol is selected.

H shows the results when the HYBRID protocol is selected. The portion of each bar

that is labeled “task” shows not only the computing time but also the cache-state

checking time. The portion labeled “msg” shows the time spent in handling remote

100 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

requests by polling. The portion labeled by “PF” shows the cache-miss time. The

portion labeled by “CM” shows the consistency managing time at shared writes.

The portion labeled by “sync”shows the synchronization time such as lock/unlock

and barrier times. And the portion labeled “GC” shows the time spent in garbage

collection.

Since on the AP1000+ the cache writes through, all modifications that the pro-

cessor makes to cached data are reflected externally [37, 71]. This makes the cost of

storage relatively high. Store instructions are executed most frequently in the “CM”

time. Therefore, the “CM” time is relatively high even though the optimization

reduces overheads for consistency-management.

In this implementation RS1/AP1000+, SAURC is best consistency protocol. The

results for HYBRID are almost same as those for SAURC. These two protocols show

better results than did the HLRC protocol. Although the network speed is relatively

high in this platform, it seems important to maintain a home for each cache-block to

which all updates are propagated and from which all copies are derived.

In three applications, HLRC causes large GC overheads. However, it should

be noted that lazy invalidate protocols that implement LRC incur this memory-

management overheads. As Yuanyuan et al. point out [88], the protocol memory

requirements can be even larger than the application memory. In the diff-based sys-

tem, the major memory consumptions are diffs and write-notices, and they must be

kept until the garbage collection. Also in the history-based RS1, the created write

histories are not discarded locally and occupies a large amount of memory. This

causes garbage collection. The cache-miss time in the HLRC protocol is larger than

the cache-miss times in other protocols because more than one remote processor may

have to be visited in order to obtain the updates and there are non-negligible over-

heads for computing updates using vector timestamp mechanism.

In SAURC, when there are only two processors that have copies, update scheme

is used. That is, not only the home-block but also the copy is updated. This causes a

large amount of network traffic in SAURC, therefore, the overheads for consistency-

management in SAURC become comparatively large. It should be noted that write

histories are discarded almost immediately after they are created and applied, and

4.3. EMPIRICAL EVALUATION OF PROTOCOL 101

lu

GC
sync
CM
PF
msg
task

Sec.

#PE
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

L A H L A H L A H L A H
2 4 8 16

Figure 4.4: Cache-coherence protocol effects on LU-Contig.

102 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

radix

GC
sync
CM
PF
msg
task

Sec.

#PE
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00

L A H L A H L A H L A
2 4 8 16

Figure 4.5: Cache-coherence protocol effects on Radix.

4.3. EMPIRICAL EVALUATION OF PROTOCOL 103

fft

GC
sync
CM
PF
msg
task

Sec.

#PE
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

L A H L A H L A H L A H
2 4 8 16

Figure 4.6: Cache-coherence protocol effects on FFT.

104 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

there are no need for garbage collections

In HYBRID, we cannot perform the Radix experiment because write histories are

collected at the home-processor and the system at the home-processor becomes out

of memory.

Of course, the vector timestamp mechanism preserves the partial-ordering among

write-notices strictly, but the experimental results show that in all protocols the syn-

chronization and cache-miss overheads increase as the number of processors increases.

This indicates that the vector timestamp mechanisms can cause large overheads when

the number of processors increases. It, therefore, seems that a lower-overhead times-

tamp mechanism is needed if the synchronization and cache-miss overheads are to be

reduced.

4.4 Basic Design of a Lightweight Run-time System

Although the RS1 is a prototype system and its implementation was naive, data

collected with the prototype system make us to design the new lightweight run-

time system, called “RS2”. SAURC was used as the cache-coherence protocol in

the lightweight run-time system RS2. To avoid excessive network communication,

however, RS2 does not use bidirectional update scheme when the number of copy

holders is two.

Furthermore, the home-usage makes it possible to preserve the partial-ordering

among write-notices with low overheads. For each cache, one-bit write-notice indi-

cating whether it has been modified since the last barrier operation [41] is maintained.

The acquiring processor gets the one-bit write-notice table (i.e., bit vector) from the

releasing processor and invalidates the caches according to the received bit vector.

Note that the home-block is always kept up-to-date and never invalidated. The

objection will no doubt be raised that unnecessary information is transfered when

processor acquires a lock. Consider the following case. When a processor acquires a

lock, modifies a cache, releases the lock, and acquires the same lock again, a cache

may be invalidated even when the cache is not modified after the processor itself mod-

ifies the cache. However, the experimental results clearly show that the tracing of

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 105

precise modification information in all cases incur large overheads. This low-overhead

mechanism is therefore used to reduce the synchronization overheads and cache-miss

overheads in many cases.

When the processor accesses the invalidate cache, the cache-miss occurs and the

cache is kept up-to-date on demand by fetching the cache-block from the home-

processor.

The lightweight runtime system RS2 has been implemented on CellOS/AP1000+

[41]. Its implementation is called RS2/AP1000+. Furthermore, the RS2 is extended

for distributed-memory computers with commodity networks, called “RS3”. The RS3

also utilizes bulk data transfer mechanism provided by the platform.

The RS3 is different from the RS2 in the following aspects:

• Avoiding fine-grained communication

The AP1000+ has dedicated hardware which executes remote block transfer op-

eration(put/get interface [37]) and the communication network is fast. Written

contents are, therefore, always sent to the home processor in a consistency-

management routine, even if the data is fine-grained.

When the compiler cannot fully optimize, however, fine-grained communica-

tions are frequently issued. Because a commodity network is not good for fine-

grained communication, information is saved as write history in a consistency-

management routine, and fine-grained communication packets whose destina-

tion processors (i.e., home) are the same are combined into a large packet by

using write-history information at run-time. This optimization is called packet

combining.

• Reducing the communication traffic at synchronizations

When only a few blocks have been modified since the last barrier operation,

transmitting the write-notice bit table for a large shared address space seems

excessive. The RS3, therefore, records an updated block-number in a list apart

from the write-notice bit table. When the number of updated blocks exceeds

the size of the write-notice bit vector, the updated block-number is no longer

106 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

recorded. At the release or barrier-arrival operation, if the size of the list is

smaller than that of the write-notice bit table, the list is transmitted. Otherwise,

the dirty bit table is transmitted.

• Handling remote requests quickly with low overheads

The run-time system on AP1000+ detects remote requests by using a polling

mechanism because CellOS on AP1000+ does not provide signals to users. A

reasonable response time is ensured by inserting polls at each backedge in the

CFG and procedure calls.

For applications with coarse-grained synchronization patterns, however, these

polling overheads are non-negligible. Therefore, it would seem useful to detect

remote requests by using an interrupt mechanism. This is because the overheads

for this kind of mechanism are reduced by the progressive techniques of recent

operating systems such as RPC.

The details of the lightweight run-time system for distributed-memory computers

with commodity networks RS3 are as follows.

4.4.1 Primitive Data Structure

A home processor is associated with each block in the shared region and the user can

specify a block-home processor for each block. Each processor maintains the state

information for each block in two bit tables.

Valid bit table has one-bit entries indicating whether or not the corresponding block

is valid or invalid.

Dirty bit table has one-bit entries indicating whether or not the corresponding block

has been modified since the last barrier operation.

Each processor maintains an updated block list recording the block-number modified

since the last barrier operation. The size of the updated block list dose not exceed

that of dirty bit table.

Each processor also manages a bit table with the size of the number of processors.

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 107

Acknowledge table indicates whether the processor has written into the block of the

corresponding block-home processor.

Figure 4.7 shows an example of how to use these primitive structures. Shared data

x resides on the cache p and h is the block-home processor of this processor. The

system has N blocks and n processors. Suppose x is first invalid. Mechanisms of the

cache-state checking routine (R) and the consistency-management routines (W) are

described in the figure.

��������

			

�
��

			

��������

V: Valid bit table, D: Dirty bit table, A: Acknowledge table

0

�

�bits

V

1

0

�

D

1

Data transfer

Cache-miss request
Home-block transfer�

�

1
�

A

��bits

Figure 4.7: Mechanisms of cache-management routines.

The synchronization tags for locks are handled by specified synchronization-home

(i.e., lock-home) processors. Each lock has its own dirty bit table, and its own updated

block list.

Each processor uses n− 1 combiningbuffers (n is the number of processors in the

system). The processor associates each combiningbuffer with each processor except

for the processor itself. The combiningbuffer associated with processor q (denoted as

CB(q)) saves the fined-grained packets to q. The size of the combiningbuffer is the

capacity of one packet.2 The behavior of the run-time system for each primitive is

2In the work dealt with here, it is 1.4 KB.

108 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

described below.

4.4.2 Consistency-Management Routine

The outline of algorithm for the consistency-management routine is shown in Figure

4.4.2.

• The run-time system RS3 checks to see if the issued region resides on the shared-

region.

This is because the consistency-management routines may be issued to may-

shared accesses.

• The RS3 checks if it is executed within the parallel task.

The reason for this is that the consistency-management routines may be issued

before parallel task starts. In other words, the consistency-management routines

may be issued to shared-accesses before CREATE macro.

• The RS3 check to see if the size of the issued shared-write region is less than

zero.

The main reason is that the size may be expressed in the symbol, such as loop

boundaries when loop optimization such as coalescing is performed.

• For simplicity, assume that the written region does not cover the multiple cache-

blocks at first. Let h be the block-home processor of the written region and p be

the writing processor (i.e., the processor issuing this routine). The RS3 reflects

information of the written block into the dirty bit table and updated block list,

and the information is also reflected into the dirty bit table and updated block

list of the synchronization tags that p has acquired. If the number of updated

blocks is larger than that of dirty bit vector, the updated block-number is no

longer recorded in the list.

If h is the same as p, the procedure does nothing. Otherwise, if the size of the

written region is fine-grained, the write history (i.e., parameters of this routine)

and the written contents are saved to the combiningbuffer for h, i.e., CB(h).

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 109

inline void SAURCConsistencyManageCode(Address Addr,int BNumber)
{

extern int SystemInitialized;
Address StartAddr,PageStart,PageEnd,EndAddr;
Address Start, End;

Pid Home;
int StartPN, EndPN;
int PNumber;

if (!SystemInitialized || BNumber <= 0)
return;

StartPN = GET_PAGE_NUMBER(Addr);
EndPN = GET_PAGE_NUMBER(Addr+BNumber-1);

if (StartPN < 0 || StartPN >= TotalPageNumber)
return;

PageStart = GET_PAGE(Addr);
PageEnd = PageStart + PAGE_SIZE - 1;

StartAddr = Addr;
EndAddr = (Address)(Addr + BNumber - 1);

for(PNumber=StartPN;PNumber<=EndPN;PNumber++) {
Home = PageHome[PNumber];

Start = PageStart < StartAddr ? StartAddr : PageStart;
End = EndAddr < PageEnd ? EndAddr : PageEnd;

SET_BIT_TABLE(AckTable,Home);
if (!TEST_BIT_TABLE(DirtyBit,PNumber)) {

SET_BIT_TABLE(DirtyBit,PNumber);
}
if (Home != MyProcNumber) {

WriteForHome(Home,PNumber,Start,End-Start+1);
}
if (CEILING(UpdatedBlockNumber+1, sizeof(short))

<
CEILING(MAX_USE_PAGE_NUMBER, 32)) {
UpdatedBlockList[UpdatedBlockNumber+1] =
(unsigned short)PNumber;
UpdatedBlockNumber++;

}
for (i = 0; i < LockPointer; i++) {

SynchData *L = LockList[i];
if (!TEST_BIT_TABLE(L->DirtyBitTable,PNumber)) {

SET_BIT_TABLE(L->DirtyBitTable,PNumber);
if (CEILING(L->UpdatedBlockNumber+1,sizeof(short)) <

CEILING(MAX_USE_PAGE_NUMBER,32))
L->UpdatedBlockList[L->UpdatedBlockNumber+1] =
(unsigned short)PNumber;

L->UpdatedBlockNumber++;
}

}
if (Home != MyProcNumber) {

WriteForHome(Home,PNumber,Start,End-Start+1);
}
PageStart += PAGE_SIZE;
PageEnd += PAGE_SIZE;

}
return;

}

Figure 4.8: Algorithm for the consistency-management routine.

110 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

inline void WriteForHome(Pid Home,int PNumber,
Address StartAddr,unsigned Size)

{
int AlignSize = ALIGN(Size,sizeof(int));
int Old = CombiningBufferCounter[Home] + 2*sizeof(int);
int New = Old + 3*sizeof(int) + AlignSize;
int *Ptr;

if (New >= BUFFERSIZE) {
TransferCombiningBuffer(Home);
Old = CombiningBufferCounter[Home] + 2*sizeof(int);
New = Old + 3*sizeof(int) + AlignSize;
if (New >= BUFFERSIZE) {

/* bulk data transfer */
Put(Home,StartAddr,Size,NULL,NULL);
return;

}
}
/* create packet and combine */
Ptr =(int *)(CombiningBuffer[Home] + Old);
*Ptr++ = WRITE;
*Ptr++ = StartAddr;
*Ptr++ = Size;
memcpy((char *)Ptr, (char *)StartAddr, Size);
CombiningBufferCounter[Home] += (AlignSize + 3 *sizeof(int));

}

Figure 4.9: Algorithm for combining used in the consistency-management routine.

• When the CB(h) becomes full, the writing processor p sends the contents of the

CB(h) to the block-home processor h asynchronously. The writing processor

p does not wait for the completion of the communication and continues the

execution. The interrupt routine at the block-home processor h receives the

packet and executes write operations according to the contents of the packet.

• When the size of the written region is large, there is no need for combining and

the write history is not saved.

First, the contents of CB(h) are sent to the processor h as mentioned above.

Second, the writing processor p directly sends the written contents asyn-

chronously by utilizing the bulk data transfer mechanism. The number of data

copy is reduced by one from what it is in the fine-grained case. The writing

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 111

processor p does not wait for the completion of the communication and contin-

ues the execution. The outline of algorithm for combining is shown in Figure

4.4.2.

• The block-home processor h is recorded in the acknowledge table.

Now consider the case in which the written region covers multiple cache-blocks.

In this case, the written region is divided at the block boundary, and the process

described above is applied to the separate written regions.

An advantage of this approach is that coherence management becomes more re-

fined by adopting the cache-coherence protocol to the application’s semantics. Mul-

tiple consistency protocols can be used to reduce further the number and volume of

communications.

Modifying the behaviors of the consistency-management routines and the checking

routines makes it possible to use other protocols such as the home-only protocol [41].

• Home-only protocol

This is used to reduce cache-miss traffic at fetch-on-write. The writer updates

the home-block without maintaining coherence.

It should be noted that the contents of the caches written by this home-only

protocol are inconsistent (i.e., the part actually written by the processor it-

self is certainly up-to-data but the other parts may be out-of-date) until the

subsequent synchronization. Therefore, when a cache-miss is detected in the

inconsistent cache before the subsequent synchronization, the home-block is

not fetched from the block-home processor until the updates of the processor

detecting the miss are reflected to the home-block.

This is made possible by maintaining home-only acknowledge table [41]. This

table indicates whether the processor has performed home-only shared-writes

into the block of the corresponding block-home processor. The cache-miss han-

dler first checks this table. If the block-home is recorded in this table, the

processor detecting the cache-miss sends confirmation message to the block-

home processor and confirms that its updates have been reflected. Then, the

112 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

cache-miss handler fetches the home-block from the block-home processor. If

the block-home processor is not recorded in this table, the processor detecting

the cache-miss fetches the home-block from the block-home processor as usual.

Figure 4.10 shows example of home-only protocol. Suppose a is first invalid

on the processor p and h is the block-home of cache c and the system has n

processors.

In the UDSM scheme, the effects of home-only protocol is obtained by not checking

the cache-state of the corresponding blocks to be written. This is done automatically

by the RCOP.

In the ADSM scheme, the system call that validates the corresponding block (i.e,

page) is required. Furthermore, after the home-only shared-write, it is necessary to

restore the page-state. The procedures for validating/restoring the page-state are

manually inserted.

4.4.3 Cache-State Checking Routine and Cache-Miss Handler

In a checking code in the UDSM scheme, the shared access range is first checked as

in a consistency-management routine. Then, the processor checks the corresponding

entry in the valid bit table. If the checking code is a merged one, multiple blocks

within the whole read region are checked consequently. Otherwise, the single block

is checked. The algorithm is shown in Figure 4.11. The home-block is always kept

up-to-date and the state is always valid. When the processor accesses a cache that

the other processors have modified–that is, a cache whose state is invalid–, a cache-

miss occurs. When a cache-miss is detected, the block contents are copied from the

block-home processor by utilizing the bulk data transfer mechanism. Of course, if the

block-home is recorded in the home-only acknowledge table, the processor detecting

the miss must confirm that updates of the processor detecting the miss itself have

been reflected before the fetch.

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 113

H: home-only acknowledge table

10

�����

C Up-to-date Stale

The state of c is still invalid

�����

CB(h) 10

������	

���������

���������

������

�After ����������operation

1

�

H

��bits

a: shared array of integer

C:the cache block containing the
array a

Transfer CB(h) and confirmation message

Acknowledge

Cache-miss request

Home-block (c) transfer

�

�

10

�����

C
The state of c is valid

�����

�The state of c is invalid

0

�

H

10

If h is recorded in H

�At 	
��������operation

Figure 4.10: Example of home-only protocol.

114 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

#define CheckSharedPageTable(Address) \
({ \

extern void PageFaultHandler (void *); \
extern unsigned long PageValid[]; \
register unsigned long _vpn; \
register unsigned long _s, _f; \

\
_vpn = GET_SHARED_PAGE_NUMBER((unsigned long) (Address)); \
if (0 <= _vpn && _vpn < TotalPageNumber) { \

_s = ((unsigned long) (_vpn)) >> 5; \
_f = ((unsigned long) (_vpn)) & 31u; \
if (!(PageValid[_s] & (1u << _f))) \

PageFaultHandler ((void *) (Address)); \
} \

})
#define CheckChunkSharedPageTable(Address, Length) \
({ \

extern void PageFaultHandler(void *); \
extern unsigned long PageValid[]; \
register unsigned long _fvpn, _tvpn, _vpn; \
register unsigned long _s, _f; \

\
_fvpn = GET_SHARED_PAGE_NUMBER ((unsigned long) Address); \
if (0 <= _fvpn && _fvpn < TotalPageNumber) { \

_tvpn = GET_SHARED_PAGE_NUMBER \
((unsigned long) Address + (Length) - 1); \

for (_vpn = _fvpn; _vpn <= _tvpn; _vpn++) { \
_s = ((unsigned long) (_vpn)) >> 5; \
_f = ((unsigned long) (_vpn)) & 31u; \
if (!(PageValid[_s] & (1u << _f))) \

PageFaultHandler ((void *) GET_PAGEADDR (_vpn)); \
} \

} \
})

Figure 4.11: Inline-codes for cache-state checking routine.

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 115

#define SizeOfDT ((MAX_USE_PAGE_NUMBER) / 32)
void SAURCLockAcquire (unsigned LID)
{

SynchData *L;
int Msg[3];
Pid Home;
unsigned SizeofLT;
L = &LockInfo[LID];
SizeOfLT = CEILING(UpdatedBlockNumber+1, sizeof(short));
Home = L->Home;
/* Flush CombiningBuffer */
WriteFlush();
if (L->Home == MyProcNumber) {

/** I am lock-home **/
if (L->Acquired == TRUE) {

/** Nobody has lock **/
if (SizeOfLT >= SizeOfDT) {

/* dirty bit table */
ApplyDirtyBit(L->DirtyBitTable);
MergeDirtyBit(L->DirtyBitTable);

} else {
/* updated block list */
L->UpdatedBlockList[0] =
(unsigned short)L->UpdatedBlockNumber;
DecodeUpdatedBlcokListForLock(L);

}
L->Acquired = FALSE;
/** Nobody gets lock **/

} else {
/** Someone has lock **/
L->WaitQueue[L->Tail++] = (Pid)MyProcNumber;
L->Tail %= MAX_PROC_NUMBER;
while(!L->Acquired);
SizeOfLT=CEILING(L->UpdatedBlockNumber+1,sizeof(short));
if (SizeOfLT >= SizeOfDT) {

/* dirty bit table */
ApplyDirtyBit(L->DirtyBitTable);
MergeDirtyBit(L->DirtyBitTable);

} else {
/* updated block list */
L->UpdatedBlockList[0] =
(unsigned short)L->UpdatedBlockNumber;
DecodeUpdatedBlcokListForLock(L);

}
L->Acquired = FALSE;
/** Nobody gets lock **/

}
} else {

/* Send lock-grant message to home */
L->Acquired = FALSE;
Send (L->Home, Msg, 3*sizeof (int));
while (!L->Acquired);
SizeOfLT=CEILING(L->UpdatedBlockNumber+1,sizeof(short));
if (SizeOfLT >= SizeOfDT) {

/* dirty bit table */
ApplyDirtyBit(L->DirtyBitTable);
MergeDirtyBit(L->DirtyBitTable);

} else {
/* updated block table */
L->UpdatedBlockList[0] =
(unsigned short)L->UpdatedBlockNumber;
DecodeUPList(L);

}
}

}

Figure 4.12: The pseudo code for acquire operation

116 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

#define SizeOfDT ((MAX_USE_PAGE_NUMBER) / 32)
void SAURCLockAcquireHandler (unsigned *Msg)
{

unsigned LID = Msg[0];
Pid ProcID = Msg[1];
SynchData *L = &LockInfo[LID];
unsigned SizeOfLT;
SizeOfLT = CEILING(L->UpdatedBlockNumber+1,sizeof(double));

if (L->Acquired) {
/** lock grant **/
if (SizeOfLT >= SizeOfDT)

/* dirty bit table */
Put(ProcID,L->DirtyBitTable,

SizeOfDT*sizeof(BitVector), L->DirtyBitTable,
NULL,NULL);

else {
Put(ProcID,L->UpdatedBlockList,

SizeOfLT*sizeof(unsigned long),L->UpdatedBlockList,
NULL,NULL);

}
Put(ProcID, &L->UpdatedBlockNumber, sizeof(unsigned long),

&L->UpdatedBlockNumber, NULL,&L->Acquired);
L->Acquired = FALSE;
/** No one can gain the lock **/

} else {
/** enqueue the message in WaitQueue **/
L->WaitQueue[L->Tail++] = (unsigned char) ProcID;
L->Tail %= MAX_PROC_NUMBER;

}
}

Figure 4.13: The pseudo code for acquire handler operation

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 117

4.4.4 Acquire (Lock) Operation

The explicit lock-acquire message is always sent to the lock-home processor. There-

fore, the lock-acquire message is serialized. At an acquire operation, the processor

retrieves the updated block list of the lock from the lock-home processor if the size of

the list is smaller than that of dirty bit table. Otherwise, the processor retrieves the

dirty bit table. In any case, the valid bit table is updated according to the received

information. In the ADSM scheme, a system call that invalidates the corresponding

block (i.e, page) is also issued. The state of the cache that has been modified since

the last barrier operation becomes invalid everywhere except in the home-block. For

each cache, only a one-bit write-notice is required. It should be noted that the size

of the synchronization messages is limited at most by that of the dirty bit table. The

pseudo code of the acquire operation is shown in Figure 4.4.4 and the pseudo code of

the acquire request handler operation is shown in Figure 4.4.4.

4.4.5 Release (Unlock) Operation

Figure 4.14 shows how the shared-write and release operations work.

In a release operation, the releasing processor first sends contents of each combin-

ingbuffer if they are not empty. Then, the processor sends confirmation messages to

the processors recorded in the acknowledge table and confirms that all sent messages

have arrived at their destinations. These processes are executed in the procedure

WriteFlush shown in Figure 4.4.5.

The explicit lock-release message is always sent to the lock-home processor. There-

fore, the lock-release message is serialized.

• If the size of the updated block list of the lock held by the releasing processor

is smaller than that of the dirty bit table of the lock, the releasing processor

sends the updated block list of the lock back to the lock-home processor. The

lock-home processor merges the sent updated block list into the updated block

list of the lock.

• Otherwise, the dirty bit table of the lock is sent back to the lock-home processor.

118 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

Acknowledge

Confirm

10

11

10

11

10

11
a: shared array of char

WC:procedure for
consistency management

a[i]

Writer

Update

a[i+1]

Release(l);

WC(a+i, 2);

a[i] = 10;

a[i+1] = 11;

a[i]

a[i+1]

Block-home

Figure 4.14: Behavior of shared-write and release operations.

The lock-home processor merges the sent dirty bit table into the dirty bit table

of the lock.

The pseudo code of the release operation is shown in Figure 4.4.5, and the pseudo

code of the release handler operation is shown in Figure 4.4.5.

4.4.6 Barrier Operation

At each barrier operation, the following steps are executed:

1. Each processor checks whether all the preceding block-home updates have been

completed (in a procedure WriteFlush()).

2. Each processor sends its updated block list to the master processor if the size

of the list is smaller than that of dirty bit vector. Otherwise, its dirty bit table

is transmitted.

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 119

void SAURCLockRelease(unsigned LID)
{

SynchData *L;
int Msg[3];
Pid Home;
unsigned SizeOfLT;
L = &LockInfo[LID];
Home = L->Home;
/* Flush CombiningBuffer */
WriteFlush();
if (L->Home == MyProcNumber) {

/** I am home **/
L->Acquired = TRUE;
/** if acquire exists **/
if (L->Head != L->Tail) {

volatile int Flag = 0;
Pid ProcID = L->WaitQueue[L->Head++];
L->Head %= MAX_PROC_NUMBER;
SizeOfLT = CEILING(L->UpdatedBlockNumber+1,sizeof(short));
/** grant lock **/
if (SizeOfLT >= SizeOfDT) {

/* transfer dirty bit table */
Put(ProcID, L->DirtyBitTable,SizeOfDT*sizeof(BitVector),

L->DirtyBitTable,NULL,NULL);
} else {

/* transfer updated block list */
Put(ProcID,L->UpdatedBlockList,SizeOfLT*sizeof(BitVector),

L->UpdatedBlockList,NULL,NULL);
}
Put(ProcID, &L->UpdatedBlockNumber, sizeof(unsigned long),

&L->UpdatedBlockNumber, NULL, &L->Acquired);
L->Acquired = FALSE;

}
} else {

/** send home my dirty bit table **/
SizeOfLT = CEILING(L->UpdatedBlockNumber+1,sizeof(short));
if (SizeOfLT >= SizeOfDT) {

/* transfer dirty bit table */
Put(L->Home, L->DirtyBitTable,SizeOfDT*sizeof(BitVector),

L->DirtyBitTable,NULL,NULL);
} else {

/* transfer updated block list */
Put(L->Home,L->UpdatedBlockList,SizeOfLT*sizeof(BitVector),

L->UpdatedBlockList,NULL,NULL);
}
Put(L->Home, &L->UpdatedBlockNumber, sizeof(unsigned long),

&L->UpdatedBlockNumber, NULL,NULL);

/** return lock to the home **/
Msg[0] = (int)LOCK_RELEASE_REQUEST;
Msg[1] = (int)LID;
Msg[2] = (int)MyProcNumber;
Send(L->Home,Msg,3*sizeof(int));

}
}

Figure 4.15: The pseudo code of release operation.

120 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

void SAURCLockReleaseHandler (unsigned *Msg)
{

unsigned LID = Msg[0];
Pid ProcID;
SynchData *L = &LockInfo[LID];
unsigned SizeOfLT;
SizeOfLT = (L->UpdatedPageNumber + 2) >> 1;

/** WaitQueue is not empty **/
if (L->Tail != L->Head) {

L->Acquired = TRUE;
ProcID = L->WaitQueue[L->Head++];
L->Head %= MAX_PROC_NUMBER;
if (ProcID != MyProcNumber) {

/* grant lock*/
if (SizeOfLT >= SizeOfDT)

Put(ProcID, L->DirtyBitTable,
SizeOfDT*sizeof(BitVector),
L->DirtyBitTable,NULL,NULL);

else {
Put(ProcID,L->UpdatedPageList,

SizeOfLT*sizeof(BitVector),
L->UpdatedPageList,NULL,NULL);

}
Put(ProcID, &L->UpdatedPageNumber, sizeof(unsigned long),

&L->UpdatedPageNumber,NULL,&L->Acquired);
/* Nobody can gain the lock */
L->Acquired = FALSE;

}
} else {

/** WaitQueue is empty **/
L->Acquired = TRUE;

}
}

Figure 4.16: The pseudo code of release handler operation.

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 121

3. The master processor merges the sent dirty bit tables and updated block lists.

When the size of merged update block list is smaller than that of the dirty

bit vector, and when none of dirty bit tables are sent to the master processor,

the master processor broadcasts the merged updated block list. Otherwise, the

master processor reflects all the received updated block lists into the merged

dirty bit vector, and broadcasts the merged dirty bit vector.

4. All processors invalidate their copies by using the sent dirty bit table or updated

block list.

5. Each processor clears its dirty bit table and updated block list, and it also clears

the dirty bit table of synchronization tags it manages.

The pseudo code of the barrier operation is shown as follows.

BitVector *DirtyBitTmp[MAX_PROC_NUMBER];
volatile int BAFlag=0;
volatile int USBAFlag=0;
volatile int BDFlag[MAX_PROC_NUMBER]={0};
volatile int USBDFlag[MAX_PROC_NUMBER]={0};
void SAURCBarrier()
{

int i,j;
unsigned NumOfUP = CEILING(UpdatedBlockNumber+1, sizeof(short));
int DirtyBitFlag = FALSE;

if ((SystemInitialized == 0) || (TotalProcNumber == 1))
return;

WriteFlush();

if (MyProcNumber != TotalProcNumber - 1) {
/* I am not a master */
if (NumOfUP >= SizeOfDT) {

/* Send dirty bit vector*/
Put(TotalProcNumber-1,DirtyBit,

sizeof(BitVector)*(CEILING(MAX_USE_PAGE_NUMBER, 32),
DirtyBitTmp[MyProcNumber],
NULL,&BDFlag[MyProcNumber]);

} else {
/* Send updated-page list*/
UpdatedBlockList[0] = (unsigned short)UpdatedBlockNumber;
Put(TotalProcNumber-1,UpdatedBlockList,

122 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

sizeof(unsigned long)*NumOfUP,
DirtyBitTmp[MyProcNumber],NULL,&USBDFlag[MyProcNumber]);

}
/** Wait for ack from master **/
UpdatedBlockNumber = 0;
while(BAFlag + USBAFlag != 1){;}
if (BAFlag == 1)

/* Dirty bit vector */
ApplyDirtyBit(DirtyBit);

else
/** Updated page list **/
DecodeUpdatedBlockNumberList((unsigned *)DirtyBit);

BAFlag = USBAFlag = 0;
for(j=0;j<ADSMLockCount;j++) {

SynchData *SY = &LockInfo[j];
if (SY->Home == MyProcNumber)

ClearLockInfo(SY);
}
ClearBitVector(DirtyBit);

} else {
/* I am a manager */
int Number = TotalProcNumber-1;
/* reflect my dirty bit table/updated page list */
if (NumOfUP >= SizeOfDT) {

/* dirty bit table */
CopyBitVector(DirtyBit,DirtyBitTmp[MyProcNumber]);
DirtyBitFlag = TRUE;

} else {
/* update page list */
UpdatedBlockList[0] = (short)UpdatedBlockNumber;
DecodeUpdatedBlockNumberList((unsigned *)UpdatedBlockList);
/* Translate updated page list ’UpdatedBlockList’ to dirty bit

table ’DirtyBitTmp[MyProcNumber]’ */
TranslateUpdatePageListToBitVector(UpdatedBlockList,

DirtyBitTmp[MyProcNumber]);

}
/* receive dirty bit table/updated page list

from each other processor */
for(;;) {

for(i=0;i<TotalProcNumber-1;i++) {
if (BDFlag[i] + USBDFlag[i] == 1) {

if (BDFlag[i] == 1) {
/* dirty bit table has arrived */
CopyBitVector(DirtyBitTmp[i],

DirtyBitTmp[MyProcNumber]);
DirtyBitFlag = TRUE;

4.4. BASIC DESIGN OF A LIGHTWEIGHT RUN-TIME SYSTEM 123

BDFlag[i] = 0;
} else {

/* updated page list has arrived */
DecodeUpdatedBlockList((unsigned *)DirtyBitTmp[i]);
/* gather update page list ’DirtyBitTmp[i]’
into ’UpdatePage’ */

GatherUpdatedBlockList((unsigned *)DirtyBitTmp[i],
UpdatedBlockList);

/* translate update page list ’DirtyBitTmp[i]’
to dirty bit vector ’DirtyBitTmp[MyProcNumber]’*/

TranslateUpdatePageListToBitVector
(DirtyBitTmp[i],
DirtyBitTmp[MyProcNumber]);

USBDFlag[i] = 0;
}
Number--;
if (Number == 0)

goto SendLoop;
}

}
}

SendLoop:
if ((DirtyBitFlag == TRUE)

||
(CEILING(UpdatedBlockNumber+1, sizeof(short))

<
CEILING(MAX_USE_PAGE_NUMBER, 32)) {
/* Send dirty bit vector to others */
for(i=0;i<TotalProcNumber-1;i++) {

Put(i,(void *)DirtyBitTmp[MyProcNumber],
sizeof(BitVector)*(CEILING(MAX_USE_PAGE_NUMBER, 32)),
(void *)DirtyBit,
NULL,(volatile int *)&BAFlag);

}
} else {

/* Send all the update page lists to others */
UpdatedBlockList[0] = (unsigned short)UpdatedBlockListSize;
for(i=0;i<TotalProcNumber-1;i++) {

Put(i,(void *)UpdatedBlockList,
sizeof(unsigned long)
* CEILING(UpdatedBlockNumber+1,sizeof(short)),
(void *)DirtyBit,
NULL,(volatile int *)&USBAFlag);

}
}
ApplyDirtyBit(DirtyBitTmp[MyProcNumber]);
ClearBitVector(DirtyBit);
UpdatedBlockNumber = 0;

124 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

for(j=0;j<ADSMLockCount;j++) {
SynchData *SY = &LockInfo[j];

ClearLockInfo(SY);
}
ClearBitVector(DirtyBitTmp[MyProcNumber]);
}

}
}

4.5 Summary

In this chapter, the effects of cache-coherence protocols has been studied by developing

and implementing the cache-coherence protocols that follow LRC model.

1. History-based LRC (HLRC)

2. Software emulation of AURC (SAURC)

3. Hybrid of HLRC and SAURC

Data collected with these prototype implementations shows that it is important to

maintain a home for each cache-block and that the timestamp mechanism strictly pre-

serving the partial ordering among write notices incurs relatively high synchronization

costs and cache-miss costs.

The lightweight run-time system, called RS3, for cache-coherence based on

SAURC has therefore been constructed to execute applications more efficiently under

the distributed-memory system with off-the-shelf hardware.

• It maintains a one-bit write-notice for each cache indicating whether the cache

has been modified since the last barrier operation. This write-notice reduces

the synchronization costs and memory requirements. Furthermore, the updated

block list mechanism is used to reduce the data transfer at synchronization

operations.

• It utilizes the bulk data transfer mechanism to efficiently execute coarse-grained

communication through the consistency-management routines issued by the op-

timizing compiler.

4.5. SUMMARY 125

• It performs the fine-grained communications efficiently by combining those

whose destination processors are the same and transferring as many as pos-

sible of them at once.

• It utilize the remote invocation mechanism of the user-specified program to

handle remote requests quickly with low overheads.

The implementation issues and performance evaluation are described in the next

chapter.

126 CHAPTER 4. RUN-TIME OPTIMIZATION FOR SOFTWARE CACHING

Chapter 5

Performance Evaluation

This chapter presents the results of evaluating performance of the optimizing methods

developed in this thesis. After the experimental environment is explained in Section

5.1, SPLASH-2 benchmark suite [86] is explained in Section 5.2. For SPLASH-2

applications, overheads for cache-coherence management routines are described in

Section 5.3, which confirms the effects of compiler optimization. The parallel per-

formance and effectiveness of these optimizing techniques are presented in Sections

5.4 – 5.9. Finally, Section 5.10 compares the results with the results obtained using

another user-level segment-based scheme, Shasta [79]. Section 5.10 also summarizes

this chapter.

5.1 Environment

The lightweight run-time system for cache-coherence mechanism described in Chapter

4, called RS3, has been implemented under a scalable OS, SSS–CORE [57, 62, 60],

on an SS20 workstation connected with the Fast Ethernet (100BASE-TX). The

RS3 is almost the same for ADSM/SSS–CORE and UDSM/SSS–CORE. The SSS–

CORE provides a protected and virtualized high-speed user-level communication and

synchronization scheme called “Memory-Based Communication Facilities (MBCF)”

[61, 59]. MBCF/100BASE-TX guarantees that packets always arrive and that they

127

128 CHAPTER 5. PERFORMANCE EVALUATION

Table 5.1: Peak bandwidthes of the MBCF/100BASE-TX (from Ref.[59]).

data size (byte) 4 16 64 256 1024 1408

100BASE-TX (Mbytes/s) 0.29 1.06 4.03 8.28 10.86 11.24

arrive in FIFO order. For programmers and compilers, the MBCF provides meth-

ods for the direct remote memory accesses in user task spaces. Middle-grained or

coarse-grained data can be handled in one MBCF operation and multiple MBCF

operations can be merged into one communication packet by combining optimiza-

tions. The command variation of the MBCF includes remote-memory-accesses (read

and write), remote-memory-accesses with flag operations, atomic operations (swap,

test&set, compare&swap), memory-based fifo, and memory-based signals [58, 59].

The MBCF supports remote invocation of the user-specified program in the priv-

ilege of the target task. The invocation mechanism (MBCF SIGNAL) is similar to

that of UNIX’s signals, and invoked programs are executed only in the scheduling

periods of the target task. Atomicity of the invoked program is ensured. The latency

of this invocation mechanism is low.

The version of SSS–CORE used for performance evaluation is Ver. 1.1a. It is

running on 16 nodes of the Sun SPARCstation 20 (85MHz SuperSPARC × 1) as

shown in Figure 5.1. Each node is equipped with Fast Ethernet SBus Adapter2.0, and

is connected by Fast Ethernet with 3Com Super Stack II Switch 3900 (switching Hub).

The SSS–CORE implements the MBCF on the 100BASE-TX (MBCF/100BASE-

TX). Table 5.1 shows peak bandwidthes of the MBCF/100BASE-TX. Table 5.2 shows

one-way round-trip latencies of the MBCF/100BASE-TX.

Table 5.2: One-way latency of the MBCF/100BASE-TX (from Ref. [59]).

data size (byte) 4 16 64 256 1024

command

MBCF WRITE (µs) 24.5 27.5 34 60.5 172

MBCF FIFO (µs) 32 32 40.5 73 210.5

MBCF SIGNAL (µs) 49 52.5 60.5 93 227.5

5.1. ENVIRONMENT 129

Figure 5.1: SSS–CORE/an SS20 workstation cluster connected with a 100BASE-TX Eth-

ernet.

130 CHAPTER 5. PERFORMANCE EVALUATION

5.2 Applications

The effects of the optimization techniques developed in this work are evaluated by run-

ning the following nine benchmarks from Stanford ParaLlel Applications for Shared

memory(SPLASH)-2 [86] on the ADSM/SSS–CORE system and the UDSM/SSS–

CORE system: LU decomposition (LU-Contig), Radix, FFT, Barnes, Raytrace,

Water-Nsquared (Water-NS), Water-Spatial (Water-SP) and Ocean (Ocean-RW) and

Volume rendering (Volrend). For each program, a block-home and a lock-home pro-

cessor are specified according to the optimization hints described in the source codes.

The source codes were modified as follows.

• LU-Contig

A contiguous version was used. The owner of block (i, j) was exchanged with

that of block (j, i).

• FFT

The matrix transposition of the original FFT program is written so that a

receiver reads the ports of the array. Severe false sharing, however, occurs

because the receiver is not always the block-home processor of the read blocks.

The program was therefore rewritten in such a way that a sender writes to the

blocks whose block-home processors are the receivers.

• Raytrace

In the original Raytrace program, a lock operation is used to increment the

global counter in order to identify each ray uniquely. Because this creates a

bottleneck in the execution and the counter is not used for actual computation,

the lock operation was removed.

• Ocean-RW

The noncontiguous Ocean program was modified to partition the grid rowwise

[43].

• Barnes

5.2. APPLICATIONS 131

The program was modified to build the octree of the particles sequentially [27].

For these measurements, the macros used in SPLASH-2 codes are converted by

m4 to procedure-calls that the RCOP can recognize. Then, the RCOP automatically

transforms application programs into instrumented C programs explicitly containing

user-level cache-coherence management routines. The compiling techniques described

in Chapter.3 were fully implemented in the RCOP. The output C program is compiled

by gcc 2.7.2 (optimizing level of “-O2”1) as the backend compiler, and then linked

with the lightweight run-time library for user-level cache-coherence management to

generate executable code.

Classifications of sharing patterns and synchronization granularity in the

SPLASH-2 applications are listed in Table 5.3. The numbers of barriers and locks are

actually measured in executing 16-processor execution, and the values are averages

for 16 processors. 2

Table 5.3: Classifications of sharing patterns and synchronization granularities in

SPLASH-2 Applications.

Application Concurrent Spatial Number Number Temporal

Writer per Access of of Synch.

Cache-block Granularity Barriers locks Granularity

LU-Contig single coarse 256 0 coarse

Radix multiple coarse 359 5 middle

FFT multiple coarse 10 0 coarse

Barnes multiple fine 2 10 coarse

Raytrace multiple fine 0 131 coarse

Water-NS multiple fine 10 4620 fine

Water-SP multiple fine 10 10 coarse

Ocean-RW single coarse 359 5 middle

Volrend multiple fine 4 0 coarse

1except for Ocean-RW
2Each problem size is described in Table 5.4.

132 CHAPTER 5. PERFORMANCE EVALUATION

5.3 Overheads for Cache-Management Routines

Table 5.4: Problem size and sequential execution time (sec) and overheads for cache-

coherence management.

ADSM Overhead UDSM Overhead

Program Problem size Sequential parallel parallel

(s) 1PE (s) (%) 1PE (s) (%)

LU-Contig 20482 doubles 435.62 436.34 0.16 464.38 6.6

Radix 4M integer keys 6.49 6.53 0.61 6.85 5.5

FFT 1M complex doubles 19.14 20.86 8.9 19.79 3.3

Barnes 32K bodies 55.71 57.20 2.6 66.51 19

Raytrace balls4,1282 pixels 171.41 171.44 0.017 175.80 2.5

Water-NS 4096 molecules 479.63 487.49 1.6 498.49 3.9

Water-SP 4096 molecules 53.23 54.92 3.1 58.79 10

Ocean-RW 2582 ocean 20.76 21.67 4.3 24.47 18

Volrend head 4.11 4.125 0.43 4.983 21

For each program, the problem size, execution times of the sequential program and

of the parallel program generated for ADSM/SSS–CORE and UDSM/SSS–CORE on

a single processor, and the percentage increase over the sequential time are listed in

Table 5.4.

It should be noted that all the data used in this experiment are on the memory of

one processor. It should also be noted that all accesses are classified as either local

or must-shared by interprocedural points-to analysis. It is found that there are no

may-shared accesses. This fact shows that the interprocedural points-to analysis we

have adopted is precise. The sequential programs were generated by applying the

NULL macro to the original shared-memory programs. The parallel programs were

generated by the RCOP with our proposed optimizing techniques.

For Raytrace, Water-NS and Water-SP, the block size of the UDSM/SSS–CORE

system was 1 KB. For the other programs, the block size was 4 KB. The block size

of the ADSM/SSS–CORE system was 4 KB (the underlying page size).

The overheads of the parallel programs executed on a single processor are due to

5.4. OPTIMIZATION EFFECTS ON PARALLEL EXECUTION 133

cache-coherence management codes (hence, with no cache-misses). The overheads for

ADSM/SSS–CORE ranged from 0.017% to 8.9%. The overheads for UDSM/SSS–

CORE ranged from 2.5% to 21%. The instruction overheads for user-level cache

management were thus reduced by using the proposed optimizing techniques. Fur-

thermore, the overheads decrease when the number of processors is increased.

The overhead for ADSM/SSS–CORE includes the shared-write operations needed

when using user-level consistency-management codes, while that for UDSM/SSS–

CORE includes the shared-read operations needed when user-level checking codes.

In the FFT program, the overhead for ADSM/SSS–CORE is much larger than that

for UDSM/SSS–CORE because to implement the home-only protocol, ADSM/SSS–

CORE issues system calls that validate pages. UDSM/SSS–CORE, in contrast, omits

checking codes automatically.

Barnes and Volrend contain fine-grained shared-read accesses for which loop-level

optimization is not performed. Therefore, the overhead for cache-coherence manage-

ment on UDSM/SSS–CORE becomes about 20% of the sequential execution time.

Ocean-RW contains near-neighbor memory accesses and memory accesses at block

boundary are not contiguous. Coalescing optimizations are also not performed to

these accesses. Furthermore, in Ocean-RW, the number of shared-read operations is

very large and instrumented program size becomes quite large. Therefore, gcc cannot

compile Ocean-RW with optimization level “-O2”. Hence, the shared-read overhead

of Ocean-RW on UDSM/SSS–CORE is 18% of the sequential execution time.

5.4 Optimization Effects on Parallel Execution

The total effects of all the optimizations for ADSM/SSS–CORE executed on 16 pro-

cessors are listed in Table 5.5, where “WCs” is the average number of consistency-

management routines. “Msgs” is the total number of messages and “MsgSz” is the

total message size. “NO” indicates the data without optimization and “YES” indi-

cates the data with full optimization.3 It should be noted that optimization reduces

the execution times for all applications.

3Note that precise shared-access detection is performed to both.

134 CHAPTER 5. PERFORMANCE EVALUATION

Table 5.5: Effects of optimization for ADSM/SSS–CORE (executed on 16 processors).

Application Optimize Time(s) WCs Msgs(K) MsgSz(MB)
NO 222.91 178111129 128.74 173.54
YES 34.03 44204 128.74 173.54
NO 11.90 540927 7996.92 447.68
YES 1.91 5970 34.84 20.27
NO 183.30 7192576 17990.07 1172.62
YES 4.93 6528 92.99 99.46
NO 43.33 176410 2692.86 268.10
YES 8.82 51948 32.90 22.63
NO 12.81 6518 159.99 87.69
YES 11.76 2306 64.15 75.52
NO 45.60 112902 2263.73 543.94
YES 43.56 21260 648.44 441.39
NO 15.28 253549 4041.59 573.55
YES 6.19 64558 140.28 146.59
NO 4.89 217414 635.42 111.21
YES 3.89 204734 80.32 79.24
NO 0.90 10419 167.87 22.89
YES 0.49 1400 9.13 11.76Volrend

Raytrace

WaterNS

WaterSP

OceanRW

LU-Contig

Radix

FFT

Barnes

In LU-Contig, the number and volume of communications are the same with and

without optimization. The reason for this is that LU-Contig does not contain remote-

writes, That is, data are transferred only when there are cache-misses. Of course,

interprocedural compiler optimization methods reduce the number of consistency-

management routines by 99.8 % because LU-Contig has regular shared-memory-

accesses in the loops and procedure calls.

In Radix, FFT, Barnes and Volrend applications, both the number and volume of

communications are considerably reduced. This is because they have shared-memory-

accesses in the loops. Inserting a consistency management routine in a loop causes a

large overhead of procedure calls and reduces memory access locality. Optimization

5.5. EFFECTS OF SHARED-WRITE OPTIMIZATION 135

is, therefore, quite effective in these applications. The number and volume of commu-

nications in Radix and FFT are especially reduced because the home-only protocol

optimization prevents the severe false sharing at fetch-on-write.

Raytrace, Water-NS, and Ocean-RW have fine-grained synchronization granular-

ities. Our optimization can change fine-grained memory accesses into coarse-grained

ones while keeping the meaning of parallel programs. Fine-grained synchronization

granularities, therefore, cannot be changed by our optimization. Nonetheless, the

number and volume of communications are quite reduced. Furthermore, Raytrace

and Water-NS originally have high task ratios and communications are not the bot-

tlenecks in the parallel executions. As a whole, it follows from these results, that

the optimizing methods developed in this work are also quite effective in the parallel

execution.

5.5 Effects of Shared-Write Optimization

Figure 5.2 and 5.3 respectively show the effects of RCOP optimization for shared-

writes in 16-processor execution under ADSM/SSS–CORE and UDSM/SSS–CORE.

For each program, the left bar is the execution time without shared-write optimiza-

tions (base time), and the right bar is the execution time with the optimization. The

other optimizations (protocl and run-time) are performed to both. Execution time is

normalized by the base time. “Sync” is the waiting time for synchronization. “CM”

is the time for consistency-management routines. “Miss” is the waiting time for cache

misses. “Msg” is the message-handling time for synchronization, and “Task” is the

time for the original computation in ADSM. “Task” in UDSM includes time for the

inline cache-state checking. These notations are used throughout this chapter.

Shared-write optimization under the SAURC protocol leads to communication op-

timization because the home-update messages are issued in shared-write operations.

Furthermore, the MBCF on SSS–CORE provides direct remote-block transfer oper-

ations. Therefore, if the RCOP detects the coarse-grained / middle-grained shared-

accesses, the performance is improved substantially. This is clearly shown in Figure

5.2 and Figure 5.3.

136 CHAPTER 5. PERFORMANCE EVALUATION

�

��

��

��

��

���

ªÐÅº

�¤

¤ÀÊÊ

¤Ê¾

«¸ÊÂ

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e(

%
)

LU-Contig FFT Raytrace WaterSP Radix WaterNS OceanRW VolrendBarnes

Figure 5.2: Effects of shared-write optimization for ADSM/SSS–CORE (executed on 16

processors).

�

��

��

��

��

���

ªÐÅº

�¤

¤ÀÊÊ

¤Ê¾

«¸ÊÂ

LU-Contig FFT Raytrace WaterSP Radix Barnes WaterNS OceanRW Volrend

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e(

%
)

Figure 5.3: Effects of shared-write optimization for UDSM/SSS–CORE (executed on 16

processors).

5.6. EFFECTS OF PROTOCOL OPTIMIZATION 137

Inserting a consistency-management routine in a loop causes a large overhead

of procedure call and reduces memory access locality. Therefore, this optimization

reduces Task time. By this optimization, not only the CM time but also the Sync

time is reduced. This is because the synchronization overheads are reduced when the

network traffic is alleviated.

5.6 Effects of Protocol Optimization

In Radix, a series of integer keys are sorted in ascending order. In the permutation

phase of the sorting, shared-read accesses are coarse-grained but shared-write accesses

are fine-grained and scattered. This situation is shown in Figure 5.4. Therefore, severe

false sharing occurs at shared writes in this phase.

����������	
������������������������	�

�	
�����	
����
��

�������� ��	���

Figure 5.4: Permutation phase.

The codes of this phase is shown in Figure 5.5. key from and key to reside on

the shared region. Accesses to key from are coarse-grained, and accesses to key to

are fine grained and scattered. These scattered write-accesses are utilized by the

RCOP. rank ff mynum[this key] is recognized as the continuous array variable.

The RCOP also finds that unsigned int this key is less than bb(=radix-1) and

the shared-write dominates the modification to the rank ff mynum[this key].

Therefore, the shared-writes can be coalesced by using the initial values and final

values of rank ff mynum[this key].

138 CHAPTER 5. PERFORMANCE EVALUATION

/* put it in order according to this digit */

for (i = key_start; i < key_stop; i = i + 1) {
this_key = key_from[i] & bb;
this_key = this_key >> shiftnum;
tmp = rank_ff_mynum[this_key];
key_to[tmp] = key_from[i];
rank_ff_mynum[this_key] += 1;

} /* i */

Figure 5.5: Code for the permutation phase.

Furthermore, the home-only protocol reduces cache-misses at these shared-writes.

In UDSM, checking codes for accesses to key to are omitted automatically. The

optimized output code-segment for UDSM/SSS–CORE is shown in Figure 5.6. For

ADSM/SSS–CORE, system calls that validate pages containing key to are inserted

manually.

The home-protocol effects on Radix under ADSM/SSS–CORE are shown in Figure

5.7. The computation of speed-up ratios is based on the times for the sequential pro-

grams (not parallel 1PE). “w/o HO” means that RCOP does not perform home-only

protocol optimization. “w/o CO” means that RCOP does not perform optimization

such as coalescing, fusion and redundant index elimination. “Opt” means that RCOP

performs all the optimization.

In “w/o CO” the overheads for consistency-management routines are compara-

tively large, but they decrease when the number of processors is increased. Therefore,

scalability is obtained. In “w/o HO”, in contrast, the performance is not improved

even when the number of processors is increased. The reason for this is that fetch-

on-write incurs the severe false sharing and this causes the large amount of commu-

nication traffic. As Jiang et al. point out [43], Radix is a difficult application on

SVM because of the large amount of communication traffic and contention. The run-

time support such as twin/diff mechanism does not solve this problem. The compiler

support only solves it.

In FFT, source and destination matrices are distributed among processors so that

each processor is the home-processor of contiguous set of n/p rows, where n is the

5.6. EFFECTS OF PROTOCOL OPTIMIZATION 139

CheckChunkSharedPageTable(key_from[i],
(key_stop-key_start)*sizeof(int));

{
int _c1;
for (_c1 = 0; _c1 < radix; _c1 += 1)

init_rank_ff_mynum[_c1] = rank_ff_mynum[_c1];
}

for (i = key_start; i < key_stop; i = i + 1) {
this_key = key_from[i] & bb;
this_key = this_key >> shiftnum;
tmp = rank_ff_mynum[this_key];
key_to[tmp] = key_from[i];
rank_ff_mynum[this_key] += 1;

}
{

int _c1;
for (_c1 = 0; _c1 < radix; _c1 += 1)

CONSISTENCYMANAGECODE
(&((int *)key[to])[init_rank_ff_mynum[_c1]],
(rank_ff_mynum[_c1] - init_rank_ff_mynum[_c1])
* sizeof (int));

}

Figure 5.6: Output code for permutation.

size of the matrix and p is the number of processors. In the modified transpose, each

processor reads from its local set of rows and writes an
√

n
p
by

√
n

p
sub-matrix to each

of the other processors. This situation is shown in Figure 5.8. Therefore, the heavy

cache-misses occur at the shared-writes. These overheads, however, are eliminated

by the home-only protocol.

Figure 5.9 shows the codes for this phase. src and dst reside on the shared

region. Accesses to src are coarse-grained, and Accesses to dst are fine grained

and scattered. However, this scattered write-accesses are coalesced by the RCOP.

In UDSM, checking codes for accesses to dst are omitted automatically. The

output code-segment for UDSM/SSS–CORE system is shown in Figure 5.10. For

ADSM/SSS–CORE system, system calls that validate pages containing dst are in-

serted manually.

The home-protocol effects on FFT under ADSM/SSS–CORE are shown in Figure

5.11. Note that the computation of the speed-up ratios is based on the time for the

sequential program (not parallel 1PE). The meanings of “w/o HO”, “w/o CO” and

140 CHAPTER 5. PERFORMANCE EVALUATION

Radix

w/o HO
w/o CO
Opt

Speedup

#PE0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

1 2 4 8 16

Figure 5.7: Effects of protocol optimization for Radix.

5.6. EFFECTS OF PROTOCOL OPTIMIZATION 141

����������	
��������

����������������	�

Transpose

	
�����	
����
�

������������	��

�
�
�

���

Figure 5.8: Transpose phase.

blksize = MyLast - MyFirst;
numblks = (2 * blksize) / num_cache_lines;
if (numblks * num_cache_lines != 2 * blksize)

{
numblks = numblks + 1;

}
blksize = blksize / numblks;
firstfirst = MyFirst;
row_count = n1 / P;
n1p = n1 + pad_length;
for (l=0;l<P;l = l + 1) {

v_off = l*row_count;
for (k=0; k<numblks; k = k + 1) {
h_off = firstfirst;
for (m=0; m<numblks; m = m + 1) {

for (i=0; i<blksize; i = i + 1) {
v = v_off + i;
for (j=0; j<blksize; j = j + 1) {
h = h_off + j;
dest[2*(v*n1p+h)] = src[2*(h*n1p+v)];
dest[2*(v*n1p+h)+1] = src[2*(h*n1p+v)+1];

}
}
h_off += blksize;

}
v_off+=blksize;

}
}

Figure 5.9: Code for the transpose phase in FFT.

142 CHAPTER 5. PERFORMANCE EVALUATION
blksize = MyLast - MyFirst;
numblks = (2 * blksize) / num_cache_lines;
if (numblks * num_cache_lines != 2 * blksize)
{
numblks = numblks + 1;

}
{
int j;
int h_off;
int m;
int l;
for (l = 0; l < P; l += 1)
for ((m = 0, h_off = MyFirst); m < numblks;

(m += 1, h_off += (MyLast - MyFirst) / numblks))
for (j = 0; j < (MyLast - MyFirst) / numblks; j += 1)

CheckChunkSharedPageTable (&src[((((l * (n1 / P)) * 2
+ (h_off* pad_length) * 2)
+ (h_off * n1) * 2)
+ (j * pad_length) * 2)
+ (j * n1) * 2],

((((MyLast - MyFirst) / numblks)
* numblks) * 2)
* sizeof (double));

}
blksize = blksize / numblks;
firstfirst = MyFirst;
row_count = n1 / P;
n1p = n1 + pad_length;
for (l = 0; l < P; l = l + 1)
{
v_off = l * row_count;
for (k = 0; k < numblks; k = k + 1)

{
h_off = firstfirst;
for (m = 0; m < numblks; m = m + 1)

{
for (i = 0; i < blksize; i = i + 1)

{
v = v_off + i;
for (j = 0; j < blksize; j = j + 1)
{

h = h_off + j;
dest[2 * (v * n1p + h)] = src[2 * (h * n1p + v)];
dest[2 * (v * n1p + h) + 1] = src[2 * (h * n1p + v) + 1];

}
}

h_off += blksize;
}

v_off += blksize;
}

}
{
int i;
int v_off;
int k;
int l;
for (l = 0; l < P; l += 1)
for ((k = 0, v_off = l * (n1 / P)); k < numblks;

(k += 1, v_off += (MyLast - MyFirst) / numblks))
for (i = 0; i < (MyLast - MyFirst) / numblks; i += 1)

CONSISTENCYMANAGECODE (&dest[(((MyFirst * 2
+ (v_off * pad_length) * 2)
+ (v_off * n1) * 2)
+ (i * pad_length) * 2)
+ (i * n1) * 2],

((((MyLast - MyFirst) / numblks)
* numblks) * 2) * sizeof (double));

}

Figure 5.10: Output code for the Transpose.

5.7. EFFECTS OF SHARED-READ OPTIMIZATION 143

“Opt” are the same as explained for the above Radix experiment.

When the RCOP does not perform loop-level optimization, the overheads for

shared-write operations are relatively high. In “w/o CO” the execution time of par-

allel 1 PE is about twice as long as the sequential time. These overheads are, however,

alleviated as the number of processors increases. In “w/o HO” the performance is

quite poor. The reason for this is that cache-misses at fetch-on-write introduce the

unnecessary data transfer since the communication granularity is fixed 4K bytes.

These results clearly show that the performance of parallel shared-memory ap-

plications is influenced by the applications’ access patterns. The programming style

avoiding cache-miss improves parallel performance. The RCOP supports the program

with fine-grained access patterns effectively as long as the read-accesses are coarse

grained and the write-accesses are fine-grained and scattered.

5.7 Effects of Shared-Read Optimization

The effects of the RCOP optimizations for checking codes on 16-processor execution

under the UDSM/SSS–CORE system are shown in Figure 5.12. The left bar of each

program is the execution time without checking code optimizations (base time). The

right bar is that with the optimizations. Note that all the other optimizations are

performed to both. Execution time is normalized by the base time.

Shared-read optimization reduces the overheads for cache-state checking routines.

Inserting a procedure for cache-state checking routines causes instruction overheads

and reduces memory access locality. Checking optimization, therefore, reduces the

computation time. Consequently, “Task” time is reduced most by checking optimiza-

tion. Because of load balancing, “Sync” time is also reduced by checking optimization.

Because the LU-Contig, FFT, and Ocean-RW programs contain regular memory

accesses in the loops, their execution times are reduced from 30% to 45% by the

proposed loop-level optimization techniques. Although Water-SP and Water-NS have

irregular access patterns, relaxed fusion and coalescing optimization are effective, and

task time is reduced about 20 %.

In the Barnes program, one process creates the octree of the particles sequentially.

144 CHAPTER 5. PERFORMANCE EVALUATION

FFT

Opt
w/o HO
w/o CO

Speedup

#PE

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 4 8 16

Figure 5.11: Effects of protocol optimization for FFT.

5.8. EFFECTS OF RUN-TIME OPTIMIZATION 145

0

20

40

60

80

100

Sy nc

CM

Mis s

Ms g

Tas k

LU-Contig FFT Raytrace WaterSP Radix Barnes WaterNS OceanRW Volrend

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e(

%
)

Figure 5.12: Effects of shared-read optimization for UDSM/SSS–CORE (executed on 16

processors).

In this time, the other processs waits at the barrier synchronization. Therefore, as

our optimization improves the tree-build time (i.e., “Task” time) of one processor,

the “Sync” times of other processors are reduced. That is to say, load-balancing is

improved.

The Raytrace and Volrend programs have originally high task ratios and the over-

heads for shared-memory access are not bottlenecks for parallel execution. The effects

of optimizations are less than 10%. As a whole, RCOP optimizations for checking

codes have good effects on these nine programs.

5.8 Effects of Run-Time Optimization

The effects of run-time optimization(i.e., packet combining) on 16-processor execution

under the UDSM/SSS–CORE system are shown in Figure 5.13. The left bar of each

program is the execution time without packet-combining (base time). The right

bar is that with the packet-combining. Otherwise, all the optimizing techniques are

applied to both. In Ocean-RW, fine-grained shared writes not merged statically are

often issued between the middle-grained shared-writes. Therefore, the combining

optimization produces satisfactory results. “CM” time and “Sync” time are reduced

146 CHAPTER 5. PERFORMANCE EVALUATION

�

��

��

��

��

���

���

ªÐÅº

�¤

¤ÀÊÊ

¤Ê¾

«¸ÊÂ

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e(

%
)

LU-Contig FFT Raytrace WaterSP Radix WaterNS OceanRW VolrendBarnes

Figure 5.13: Effects of packet combining for UDSM/SSS–CORE (executed on 16 procs)

by 20 %.

In Barnes, fine-grained shared-writes are often issued at the sequential tree-

building phase. The combining optimization improves “Task” time of tree-building

process and “Sync” times of other waiting processes. Therefore, the combining opti-

mization improves the load-balancing and “Sync” time are improved by 40%.

The response times for a cache-miss (i.e., “CM” time) in Barnes, Water-SP, Ocean-

RW and Volrend are reduced. This is because the combining optimization reduces

the number and amount of communication. Of course, the total execution times of

these applications are reduced.

Packet-combining has no effect on LU-Contig or Radix. The RCOP merges cache-

coherence management routines into coarse-grained ones. Hence, it is not necessary

to combine packets dynamically in these applications.

The total execution times of Water-NS and FFT are increased by packet-

combining. This data thus shows that combining optimization does not always have

good results. When the packet-combining is done, the number of packets is reduced

and communication overheads are decreased. That is, communication overheads are

reduced. But, the run-time system needs to handle write histories and the number of

data copies is increased in comparison with that of direct data transfer. That is to

say, the instruction overheads are increased. There is a trade-off.

5.9. PARALLEL PERFORMANCE 147

In FFT, the amount of shared writes is quite large compared with the amount of

computation. Furthermore, frequently issued shared-write region is middle-grained,

about 1KB. The written data is therefore first copied into the combiningbuffer whose

size is 1.4KB. However, the next written data with the same size cannot be copied into

the combiningbuffer because the buffer will overflow. The contents of combiningbuffer

are therefore flushed before the new written contents are copied into it. This process

causes overheads.

The experimental results show that the effect of packet combining depends on

memory-access patterns of applications and the size of combiningbuffer (i.e., the

packet-size).

5.9 Parallel Performance

0

2

4

6

8

10

12

14

16

� �� � �� � �� � �� � �� � �� � �� � �� � ��

A DS M UDS M

LU-Contig FFT Raytrace WaterSP Radix Barnes WaterNS OceanRW Volrend

S
pe

ed
up

 r
at

io

Figure 5.14: Speed-up ratios on 8 and 16 processors.

The speed-up rations for the nine programs with the proposed optimization on 8

and 16 processors are shown, for the ADSM/SSS–CORE system and the UDSM/SSS–

CORE system, in Figure 5.14. The computation of the ratios were based on the times

of the sequential programs. Overall, both systems had very high speed-up ratios for

the LU-Contig, Water-NS, Water-SP, Raytrace and Volrend programs. The Radix,

148 CHAPTER 5. PERFORMANCE EVALUATION

Table 5.6: Average time breakdowns(sec) for 16-processor execution.

program scheme Sync CM Miss Task

LU-Contig
ADSM 3.907 0.035 1.795 28.573

UDSM 3.721 0.041 1.873 30.171

Radix
ADSM 0.460 0.866 0.083 0.504

UDSM 0.322 1.063 0.089 0.479

FFT
ADSM 0.712 2.886 0.000 1.341

UDSM 0.547 2.948 0.000 1.229

Barnes
ADSM 4.614 0.115 0.349 3.743

UDSM 5.389 0.121 0.290 4.862

Raytrace
ADSM 0.183 0.021 0.906 10.620

UDSM 0.192 0.030 0.282 12.714

Water-NS
ADSM 8.015 0.070 4.895 30.325

UDSM 7.003 0.065 4.062 31.338

Water-SP
ADSM 0.390 0.164 1.947 3.688

UDSM 0.324 0.114 1.537 3.728

Ocean-RW
ADSM 1.300 0.161 0.988 1.434

UDSM 1.422 0.172 1.052 2.258

Volrend
ADSM 0.0719 0.003 0.146 0.277

UDSM 0.0369 0.00515 0.0137 0.325

5.9. PARALLEL PERFORMANCE 149

FFT, Barnes and Ocean-RW programs showed good scalabilities on both systems.

To make it easier to understand where the time goes, Table 5.6 lists the results of

breaking down the program execution times on the 16 processors. The meanings of

“Sync”, “CM”, “Miss”, “Task” are the same as in Section 5.4. It should be noted

that when the home-only protocol is used, “Task” also includes the time for a system

call needed to implement the home-only protocol for the ADSM/SSS–CORE system.

It should also be noted that “Task” includes not only the original computation time

but also the cache-state checking overheads in the UDSM/SSS–CORE system.

The LU-Contig program uses a tiled data partitioning with each tile of the matrix

allocated as a contiguous region. Many shared-read and shared-write operations are

performed to each tile. Their cache-management codes are combined into one code

by interprocedural shared-access set calculation. The data listed in Table 5.6 shows

that the performance difference between ADSM/SSS–CORE and UDSM/SSS–CORE

is due to the UDSM/SSS–CORE overhead for checking the cache-state.

The FFT and Radix programs are challenging applications for software DSM be-

cause they potentially require a large communication bandwidth because of false shar-

ing [29, 43, 76, 89]. Nonetheless, both ADSM/SSS–CORE and UDSM/SSS–CORE

systems obtain good scalability by using the home-only protocol. The performance

difference between these two systems is due to the overhead for the system calls

needed to implement the home-only protocol in ADSM/SSS–CORE.

In the Raytrace program, there is little sharing. Raytrace uses distributed task

queues to share workloads. The lock-home specification for task queues reduces the

synchronization overhead. It is a highly parallel program. The data listed in Table 5.6

shows that the performance difference between ADSM/SSS–CORE and UDSM/SSS–

CORE is due to the checking overhead.

The Barnes program solves an N-body problem by using the Barnes-Hut

O(n log n) algorithm. It contains many shared accesses that are not statically

merged, and we can see from the data listed in Table 5.6 that checking overhead

of UDSM/SSS–CORE is large even with 16-processor execution. Building the tree

of particles sequentially can cause a load imbalance. Therefore, the synchronization

overhead in both systems is large.

150 CHAPTER 5. PERFORMANCE EVALUATION

The Water-NS program computes the forces and potentials in a system of water

molecules. All the molecules are allocated on a shared 1-D array, and the array is

decomposed so that each processor modifies a contiguous region. False sharing occurs

only at boundaries. This program contains memory accesses for which loop-level

relaxed optimizations are performed. Both systems produce high speed-up ratios.

The Water-SP program computes the same problem by spatially partitioning a

uniform 3-D grid of cells. The molecule data structures and cell data structures, each

with size less than 1 KB, are allocated separately. The ADSM/SSS–CORE system

transmits unnecessary data at cache-misses because the cache size is 4 KB fixed. The

UDSM/SSS–CORE system, in contrast, sends much less unnecessary data because

the cache size is 1 KB. This is why UDSM/SSS–CORE provides better performance.

The Ocean-RW program partitions a grid into blocks of rows. The memory ac-

cesses are contiguous in the blocks, and coalescing is performed for these accesses.

However, coalescing optimization is not always applied to memory accesses to data

in near-neighbor blocks because these accesses are not contiguous. These accesses

can sometimes cause cache-misses. Therefore, cache-miss and synchronization over-

heads are dominant in both systems. In the UDSM/SSS–CORE system, checking

overhead is not negligible. This is the reason ADSM/SSS–CORE performs better

than UDSM/SSS–CORE.

The Volrend program computes images by using ray-casting techniques. The

image planes are distributed among processors and the the partitioned planes are

not as large as the page-size. False sharing, therefore, occurs when the processor

writes to the image planes. In UDSM/SSS–CORE, this is avoided by the home-only

protocol. In ADSM/SSS–CORE, however, the overheads for the incurred system calls

that validate theses pages become quite large. Therefore, in this application, applying

the home-only protocol slightly degrades the performance. The ADSM/SSS–CORE

system, hence, does not use home-only protocol. It follows from this that cache-miss

overheads in the ADSM/SSS–CORE system are larger than those in the UDSM/SSS–

CORE system (Table 5.6).

In the five programs for which the ADSM/SSS–CORE system performed better

than the UDSM/SSS–CORE system, the main source of overhead is checking the

5.10. SUMMARY AND DISCUSSIONS 151

(software-)cache-state. Checking the cache-state can cause hardware cache-misses

when the valid bit table is loaded. The UDSM/SSS–CORE system performed well

for programs that have middle-grained remote-memory accesses. The block size of

ADSM/SSS–CORE must be equal to the size of a memory-page (4KB). Unnecessary

data can therefore be transmitted when a cache-miss occurs. The block size, of course,

has an influence on the waiting time for a cache-miss. For Raytrace, Water-NS and

Water-SP, the block size of the UDSM/SSS–CORE system is less than the packet

size, and the waiting time is shorter on the UDSM/SSS–CORE system than on the

ADSM/SSS–CORE system. Owing to checking code optimization, for Barnes and

Volrend, the waiting time for a cache-miss is also shorter on the UDSM/SSS–CORE

system than on the ADSM/SSS–CORE system.

5.10 Summary and Discussions

This work has demonstrated by using SPLASH-2 benchmark suite that the combi-

nation of optimizing compiler and user-level cache coherence mechanism is effective.

Shared-write optimizations eliminate mainly communication overheads and shared-

read optimizations reduce the checking overheads for every application. The packet

combining optimization is effective for applications on which compiler optimization

does not work well. The home-only protocol is indispensable for applications with

fine-grained scattered shared-writes.

Our approach deals with explicit parallel shared-memory programs. Explicit par-

allelism can be used to express applications that is difficult for data parallel lan-

guage. The experimental results show that the proposed optimizing techniques yield

high performance for applications (such as LU-Contig, FFT and Volrend) that can be

expressed in data parallel language and parallelized. It follows from this that the Soft-

ware DSM system exploiting application’s semantics can not only accept wider class

of applications but also provide high performance with parallelizable applications.

In general, there are more opportunities for optimizing communications and execu-

tions under UDSM than under ADSM. This work has confirmed that the performance

152 CHAPTER 5. PERFORMANCE EVALUATION

of ADSM/SSS–CORE is limited by the communication of unnecessary data in pro-

grams with fine-grained data accesses, while that of the UDSM/SSS–CORE is limited

by the instrumentation overhead. Of course, it is not easy to always reduce the in-

strumenting overheads for any programs. This work, however, has demonstrated that

the optimization methods developed for directly analyzing applications and exploiting

applications’ semantics are effective in reducing these overheads to a range of 2.5%

to 21% for nine applications with various access patterns.

Compare these results with another fully user-level DSM, called Shasta[79, 78].

Shasta is a Software DSM that supports fine-grained access to shared-memory by in-

serting cache-management codes before shared-loads and shared-stores. Namely, the

Shasta resembles the Hardware DSM mechanism. The compiler for Shasta analyzes

not the source code but the binary code of an application, and support variable co-

herence granularities within a single application. It also performs various optimizing

techniques, such as batching and invalid flag techniques.

Batching is a technique merging checks of multiple loads and stores only when

their base registers are the same and their offsets are less than or equal to the line-

size (64-128 bytes). The invalid flag technique is to skip the checking of the cache state

if the data is valid. Before state-checking, the processor at first loads the value, and

compares the value with the particular “flag” value. If the loaded value is not equal

to the flag value, the loaded value is valid and the code continues to run immediately.

The checking routine is called only when the loaded value is equal to the flag value.

The Shasta’s result reported in Ref [77] are listed in Table 5.7. The experiment

environment is AlphaServer 4100. The processor on AlphaServer 4100 is 300 MHz

21164, which has 16 KB on-chip I-cache and D-cache, 96 KB on-chip combined second-

level caches and 2 MB board-level cache. The input-size of Barnes and Ocean are

different from those in the present work, but the checking overhead percentages are

not affected by the input-size.

This comparison shows that the present approach directly analyzing source codes

produces better results than does Shasta’s approach, except with Volrend and Barnes

programs. The present approach is found most effective in regular applications with

coarse-grained shared access patterns such as LU-Contig, and to produce satisfactory

5.10. SUMMARY AND DISCUSSIONS 153

Table 5.7: Checking overheads found in the Shasta system (from Ref. [77])

problem size sequential with Shasta miss check

time miss checks overhead

Barnes 16K particles 9.05s 9.92s 9.6%

LU-Contig 20482 doubles 140.9s 176.5s 25.3%

Ocean 5142 ocean 11.04s 13.29s 20.5%

Raytrace balls4 71.53 79.59 11.3%

Volrend head 1.62 1.76 8.6%

Water-Ns 4096 molecules 125.9 147.3 17.0 %

Water-Sp 4096 molecules 15.94 18.12 13.7 %

results for irregular applications with fine-grained synchronization and fine-grained

sharing patterns (such as Water and Raytrace). The relaxed coalescing optimization

and fusion optimization contribute to the superior performance of this approach.

The present approach causes overheads about 20 % for Barnes and Volrend, while

Shasta’s approach makes the overheads for theses applications about 10%. This differ-

ence is due to these applications’ fine-grained shared accesses that are not translated

into middle-grained/coarse-grained ones. For these applications, each checking cost

is the key to performance. Optimization like invalid flag techniques used in Shasta

can be suitable for these applications. but, this requires the flag value to actually be

written to the shared data at coherence management. This reduces the advantages of

optimizations like coalescing and fusion. Therefore, it is concluded that more elabo-

rate checking techniques are required for the UDSM scheme or that ADSM scheme

should be used for these kinds of applications.

154 CHAPTER 5. PERFORMANCE EVALUATION

Chapter 6

Related Work

6.1 Compiler-Assisted DSM

There are three kinds of projects combining compilers and Software DSMs.

1. Software DSM as a target for a parallelizing compiler

Keleher et al. [47] combine the Stanford SUIF compiler system [83] and software

DSM. If the compiler can detect communication patterns, the update coherence

protocol is selected. If the compiler can detect reduction operation, reduction

is executed locally and the local-results are sent in a barrier-arrival message. A

barrier master performs all reductions and updates the value of global data. Lu

et al. [55] use this approach to support irregular computation.

Boyle et al. [72] utilize features of SPMD program to compute the minimum

number of barrier insertion by computing cross processor dependence.

These results clearly show that software DSM schemes assisted by these op-

timizing techniques provide good performance for parallelizable applications.

These techniques, however, are applied only to parallelizable applications. The

class of applications that allow precise analysis is limited. Our approach deals

with explicitly parallel programs, more wider classes of applications. Further-

more, our experiment shows that our approach provides high performance for

applications that can be expressed in a data-parallel language.

155

156 CHAPTER 6. RELATED WORK

2. Association between shared data and synchronization

Programmers specify coherence protocol for each shared data [11, 80, 18]. How-

ever, they have to rewrite existing programs. Furthermore, it require consider-

ably programming efforts to write these programs from scratch. Our approach

deals with applications based on LRC model. It is easy to write programs based

on LRC model because LRC is a natural extension of sequential consistency.

Various optimizations using user-program information are performed. False

sharing does not occur in this approach, but the approach always causes over-

heads of packing and unpacking messages are always caused.

In Midway [87], software dirty bits are used to detect modifications to shared

data and a software dirty bit is associated with each cache line in the system.

The compiler generates codes to flip the associated dirty bit on each shared

write. No loop-level optimization is performed. The overheads is proportional

to the number of shared-writes. Our approach performs the loop-level opti-

mizations for shared-writes and reduces the overheads as much as possible. Our

approach reduces the overheads for shared-write operations to a range of 0.017%

to 8.9% for various applications.

In CRL [44], programmers are forced to insert calls to delimit operations on

shared-data. Not only allocations but also mapping, read and write are explic-

itly specified by the programmers. That is to say, all the cache-management rou-

tines are explicitly inserted by the programmer. Although association between

shared data and synchronization is not explicitly specified by programmers,

this programming style requires the much programming effort. Our approach

handles the traditional shared-memory programming style and shared-memory

accesses are detected and optimized by the optimizing compiler.

3. Direct analysis of explicitly parallel programs

Several software DSMs that use an optimizing compiler analysing explicitly

parallel programs directly have been reported. Tempest [74] provides the pro-

grammer with message communication mechanism to construct shared memory

6.1. COMPILER-ASSISTED DSM 157

protocols and it is implemented on a Thinking Machines CM-5, called Blizzard-

S [19]. Blizzard-S rewrites the executable files to insert a state-table lookup

before every shared-memory access. However, The Blizzard-S, however, uses

sequential consistency protocol and uses a single-writer protocol as a base pro-

tocol. The protocol optimization is performed only by the programmers. This

requires the same efforts as describing packing/unpacking procedures directly.

Shasta [79], Blizzard-S’s successor, also supports fine-grained coherence in full

software by rewriting application binary to intercept shared loads and shared

stores. The mechanism of Shasta resembles to the Hardware DSM mechanism.

A flag value technique is used to skip the checking of the cache state if the

data is valid, and a batch technique is used to merge multiple checking codes.

Because Shasta does not perform loop-level, interprocedural optimization, it

requires large-bandwidth and low-latency network. The goal of Shasta is to

reduce instrumentation overheads as preserving fine-grained shared-accesses.

Our approach changes fine-grained shared-memory accesses into coarse-grained

ones while keeping the meaning of parallel programs to reduce communi-

cations overheads and instrumentation overheads. The optimizing compiler

RCOP issues the cache-coherence management routines with coarse-grained

size for shared-memory accesses by using source program information. The

lightweight run-time system RS3 utilizes the bulk data transfer mechanism

through compiler-inserted routines. Our approach, therefore, is more suit-

able for computer clusters using commodity communication hardware. This

is because such commodity network hardware has non-negligible overhead for

communication.

Dwarkads et al. [26] performed compiler analysis on explicitly parallel programs1

to improve their performance on Software DSM. By using regular section anal-

ysis, they detected the data-access patterns at compile-time and used them to

help the run-time system aggregate communication and synchronization and re-

duce consistency-management overheads. However, their compiler analysis was

1Fortran programs

158 CHAPTER 6. RELATED WORK

performed only intraprocedurally and was also limited by a conditional code.

Furthermore, access patterns analysed were limited to induction variables. Each

shared array must be page-aligned to ease the compiler analysis and to reduce

consistency-management overheads, and this requires a large amount of mem-

ory. Our approach, however, deal with C programs handling pointers and does

not require page-alignment because it uses precise points-to analysis. The op-

timizations are performed interprocedurally, and coalescing optimizations can

be performed using not only induction variables but also continuous index vari-

ables.

6.2 Comparative Study of Software DSM Schemes

This thesis attempts to compare the page-based scheme with segment-based scheme

by running fully optimized real applications. Of course, much comparative studies

about software DSM have been done as follows.

Adve et al. [1] compared lazy release consistency with entry consistency. They

have concluded that compiler instrumentation has worse performance than twinning

(comparing the current version of shared data with an older version dynamically).

But their compiler uses only the dirty-bit mechanism [11]. It is difficult to say that

the programs are fully optimized. Their compiler does not utilize the coarse-grained

/ middle-grained shared-memory-accesses along with lazy release consistency.

Cox et al. [23] compared hardware approach with software approach. They used

SGI 4D/480 and TreadMarks running on an ATM network of DEC Stationr5000/240s.

The point of this comparison is that two platforms are all the same execpt for shared-

memory implementation. That is, processors, caches and compilers are the same.

They reported that SGI 4D/480 outperforms TreadMarks for applications with fre-

quent synchronization and communication and that TreadMarks outperforms the SGI

for applications with high memory bandwidth requirements. Our comparison also uses

the same platform.

Amza et al. [8] proposed adaptive protocols that dynamically choose between

single-writer and multiple-writer, based on write-write false sharing and/or write

6.3. INTERPROCEDURAL OPTIMIZING COMPILER 159

granularity. The protocol avoids the worst case behavior of single-writer protocol

(the effect of ping-pong effect) and multiple-writer protocol (the diff accumulation

problem). They compared the adaptive protocol with non-adaptive protocols (single-

writer-only protocol and multiple-writer-only protocol). They said that adaptive

protocol outperforms the non-adaptive protocols. Although our approach supports

multiple-writer protocol, there are no diff accumulation problems because we intro-

duce SAURC protocol, that is, home-update protocol.

Dwarkadas et al. [27] examined the performance tradeoffs between a coarse-

grained approach, that is, page-based DSM (Cashmere) and fine-grained approach,

an instrumentation-based DSM (Shasta) on the Memory Channel network. The

instrumentation-based DSM provided robust performance. The instrumentation-

based DSM is assisted by the optimizing compiler. However, this page-based DSM is

not supported by the optimizing compiler. This situation is against the page-based

DSM.

Little is known about the performance tradeoffs between the page-based scheme

and the segment-based scheme when both are fully assisted by the optimizing com-

piler. Moreover, our goal is to examine the role of optimizing compiler in software

DSM schemes through the comparison. The optimization techniques developed in

this work put the segment-based DSM scheme to practical use. These optimization

techniques are effective in reducing instrumentation overheads to a range of 2.5 % to

21 % for various applications.

6.3 Interprocedural Optimizing Compiler

In the 1970s, a series of basic dataflow analysis techniques were proposed such as

global subexpression elimination[21], interval analysis [5] and interprocedural analysis

[6]. The basic concept of optimizations in the RCOP is, of course, based on these

excellent works.

The conventional approach [36] to interprocedural parallelization analysis is to

determine the sections of arrays that are produced/consumed by each procedure call

contained in loops. These techniques were shown to be effective in parallelizing linear

160 CHAPTER 6. RELATED WORK

algebra libraries.

A framework for interprocedural analysis and transformation (FIAT) [33, 34] has

been proposed as a general environment for interprocedural analysis. The FIAT uses

region-based analysis 2 and the analysis is performed in two passes over the pro-

gram. The FIAT partitions calling context information into equivalence classes and

eliminates irrelevant information. For each equivalence class, dataflow information is

replicated. This is called selective procedure cloning. FIAT has been implemented

as a part of SUIF compiler system and used for array dataflow analysis (such as

array privatization and array reduction) [32]. Our approach for detecting induction

variables and continuous variables utilizes this framework.

Interprocedural symbolic analysis has been used to solve symbolic constant prop-

agation, generalized induction variable substitution and loop invariant computations

detection. These problems have important roles in dependence analysis that is the

basic component of a parallelizing compiler. It is appropriate to consider that our

approach for detecting induction variables and continuous variables also utilizes the

symbolic-analysis framework. The interprocedural symbolic analysis has been imple-

mented in Parafrase-2 [31], and the results of an experiment using Perfect Benchmarks

show that the interprocedural symbolic analysis is a powerful technique. This analy-

sis, however, cannot be applied to array, pointers and abstract data types. Therefore,

it cannot find continuous array variables that can be detected by using our approach.

Interprocedural points-to analysis is implemented in SUIF compiler system, and

features of the analysis are described in Chapter 3 by using examples. The analysis is

iterative one. It includes the effects of intraprocedural control flow and distinguishes

information originating from different calling contexts by partial transfer function.

Partial transfer functions summarize the points-to information in their calling con-

texts. The point is that they are reused unless aliases between pointers that are

dereferenced are changed. Our approach uses this analysis to detect shared-access

precisely.

2Regions correspond to loops and procedure-calls

6.3. INTERPROCEDURAL OPTIMIZING COMPILER 161

Interprocedural partial redundancy elimination is a general framework for elim-

inating partial redundancies that includes traditional optimization such as loop-

invariant code motion and redundant code elimination. Agrawal et al. [2, 3] uses

this framework for inspector/executer scheme. They use concise, full program rep-

resentation, but do not consider the possibility of aliasing. The RCOP uses inter-

procedural points-to analysis to solve this problem. The basic dataflow equations in

their approach are more complicated than those in our system, and it is not easy to

implement.

Interval-based framework for solving interprocedural dataflow equations was in-

vestigated in Burke’s work [15]. It can be applied to any monotone dataflow problem.

This framework is used for alias analysis in this work. We have adopted this frame-

work to efficiently solve redundancy elimination dataflow equations for summaries of

shared-memory accesses.

None of these fine analyses have been used for explicitly parallel shared-memory

programs. The RCOP is the first optimizing compiler to summarize shared-memory-

accesses interprocedurally by using the interval analysis framework.

162 CHAPTER 6. RELATED WORK

Chapter 7

Conclusion and Future Direction

7.1 Conclusion

A coherent shared address space provides an attractive programming environment for

parallel computing. Software DSM provides shared address space at run-time and ac-

cepts a wide range of applications, and it is easy to implement on the existing systems

with commodity hardware. Optimizing methods are indispensable for improving the

performance of Software DSM schemes. That is, compiler optimization, protocol op-

timization, run-time optimization and the interfaces that enable these optimizations

are required.

We have introduced two compiler-assisted software DSM schemes as the interfaces

for these optimizations. These schemes can be considered as hybrid of shared-memory

and message-passing. The UDSM scheme is a segment-based and fully user-level

system. The ADSM scheme is a page-based system. The UDSM provides a pro-

grammer/compiler with opportunities to perform optimization for both shared-read

accesses and shared-write accesses. The ADSM, on the other hand, offers a program-

mer/compiler chances to perform optimization for shared-write accesses.

The purpose of compiler optimization is to generate codes reducing the commu-

nication and instruction overheads for software cache-coherence management. The

approach described in this thesis exploits the application’s semantics (such as loops,

163

164 CHAPTER 7. CONCLUSION AND FUTURE DIRECTION

procedure calls) by using the relaxed coherence model, interprocedural alias infor-

mation and an interprocedural redundancy-elimination framework based on interval

analysis.

This approach has been implemented in an optimizing compiler developed for

shared-memory parallel programs, called a “Remote Communication Optimizer”

(RCOP). It performs

• interprocedural points-to analysis and

• interprocedural shared-access-set calculation by using interval analysis to solve

redundancy elimination equations.

As a result,

• it detects all the shared-accesses precisely,

• it removes redundant cache-coherence management routines, and

• it merges multiple redundant cache-coherence management routines by using

loop structures and procedure calls.

The RCOP exploits continuous variable information for shared-write optimizations.

To make the cache-coherence protocol optimization possible, we have developed

the various methods of implementing cache-coherence mechanisms that follow LRC

model:

1. History-based LRC (HLRC)

2. Software emulation of AURC (SAURC)

3. Hybrid of HLRC and SAURC

We have collected data showing that it is important to maintain a home for each cache-

block and that the timestamp mechanism conventionally used to strictly preserve the

partial ordering among write notices incurs relatively high synchronization costs and

cache-miss costs and large memory requirements.

To make the run-time optimization, we have also proposed the lightweight run-

time system for cache-coherence management, called RS3.

7.1. CONCLUSION 165

• It maintains a one-bit write-notice for each cache indicating whether that cache

has been modified since the last barrier operation. This write-notice mechanism

reduces the synchronization costs and memory requirements. Furthermore, the

updated block list mechanism is used to reduce the data transfer at synchro-

nization operations.

• It utilizes the bulk data transfer mechanism to efficiently execute coarse-grained

communication through the consistency-management routines issued by the op-

timizing compiler.

• It performs the fine-grained communications efficiently by combining those

whose destination processors are the same and transferring as many of them

as possible at once.

• It utilize the remote invocation mechanism of the user-specified program to

handle remote requests quickly with low overheads.

This run-time system RS3 has been implemented under a general-purpose scalable

OS, SSS–CORE, on the SS20 workstation cluster connected with the Fast Ethernet

(100BASE-TX), utilizing MBCF.

The proposed optimizing methods have been demonstrated effective under the

ADSM/SSS–CORE and UDSM/SSS–CORE systems by using the SPLASH-2 bench-

mark suite. The followings are found from our experiment:

• The RCOP reduces overheads for software cache-coherence management in the

ADSM/SSS–CORE system to a range of 0.017% to 8.9%. The RCOP reduces

overheads for software cache-coherence management in the UDSM/SSS–CORE

system to a range of 2.5% to 21%.

• Shared-write optimizations eliminate mainly communication overheads and

shared-read optimizations reduce the checking overheads for every application.

• The packet-combining optimization is effective for applications on which com-

piler optimization does not work well.

166 CHAPTER 7. CONCLUSION AND FUTURE DIRECTION

• The home-only protocol is crucial for applications with fine-grained scattered

shared-writes.

• Our proposed optimizing techniques yield high performance for applications

(such as LU-Contig, FFT and Volrend) that can be expressed in data parallel

language and parallelized.

• The performance of ADSM scheme is limited by the communication of unneces-

sary data in programs with fine-grained data accesses, while that of the UDSM

scheme is limited by the instrumentation overhead. The UDSM scheme reduces

false sharing and transmission of unnecessary data, both of which are potential

problems in the page-based system.

The optimization effects in Software DSM have been confirmed through the evalua-

tion of proposed frameworks. It should be noted here that the optimizing techniques

developed in this thesis made it possible to put the segment-based software DSM

to practical use. The general applicability of this approach should also be noted.

The approach is not peculiar to ADSM and UDSM. The approach does not perform

machine-dependent optimization. And the approach is, therefore, portable. It can be

applied to not only to Software DSM but also to Hardware DSM.

We can see now that it is possible to construct general-purpose scalable shared-

memory parallel computer with commodity hardware.

7.2 Future Direction

General Applicability of Our Approach

In this work, C language extended by PARMACS macro is used as the parallel pro-

gramming language. Of course, our approach is applied to any explicitly parallel

program as long as parallel constructs are recognized. Recently, OpenMP seems

to be attracting wide-spread support among application developers [73]. OpenMP

API provides directives that allow users to annotate a sequential program (C/C++

and Fortran) to explicitly specify parallel-execution parts. The users are responsi-

ble for ensuring that applications using OpenMP constructs execute correctly. That

7.2. FUTURE DIRECTION 167

is, checks for dependencies, conflicts, deadlocks, race conditions are not required

for OpenMP system (compilers/run-time library). Furthermore, the modification to

shared data by a thread is not visible to other threads until the thread encounters

synchronization directives. Therefore, our approach is straightforward applied to

OpenMP.

The shared-access summary calculation described in this thesis can be used for

other purposes. Let us consider Java [81]. In Java, each array access (such as iaload)

is checked whether the index is within the array region. Array accesses are often per-

formed in the loop. Therefore, the check per iteration causes considerable overheads.

If the JIT compiler utilizes loop-level optimization methods, the index check is merged

into one check.

Future Direction of Our Approach

We are now studying techniques to further reduce the compilation time of our frame-

work. Coalescing test, fusion test and redundant index test are frequently calculated

in inner loops. Therefore, we use memorization technique to store and reuse previ-

ously computed results. In our current implementation, computing the intersection /

optimized-union of sets of shared-access sets (A
⋂
B / A

⊔
B) requires O(|A||B|) time

because several tests such as fusion and inclusion are performed to each shared-access

set. This may lead to large compilation time when the number of shared-access sets

becomes large. Therefore, we should improve these computations. In UDSM compi-

lation, shared-read optimizations and shared-write optimizations are performed sep-

arately. If the results of shared write optimizations can be reused when performing

shared-read optimizations, the compilation time will further be optimized.

We assume that commodities (e.g. Fast ethernet) are used as the communication

hardware of the system. As has been noted, such commodities have non-negligible

overheads for communication and hence they are poor at fine-grained communica-

tions. Furthermore, since there is a limit for the size of the sending buffer in the

communication hardware, large data can not be sent over the limit at a time. Our

current optimization methods attempts to issue checking routines and consistency-

management routines with coarse-grained size. Therefore, they are not always optimal

168 CHAPTER 7. CONCLUSION AND FUTURE DIRECTION

on our supposed platform. It is advantageous on performance to adjust the data-size

of communication packets statically or dynamically.

Future Direction of Software DSM

Of course, the result of our experiment reveals that the page-based scheme is superior

to the segment-base scheme in five applications out of nine. In the future, however, a

segment-based scheme may outperform a page-based scheme if the difference between

the speeds of processors and networks is much larger than it is now. The reason for

this is that the bottleneck for a page-based scheme lies in a network because of

false sharing and unnecessary data transfer, while the bottleneck for a segment-based

scheme lies in a processor because of overheads for coherence management in all

software.

Bibliography

[1] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. A

Comparison of Entry Consistency and Lazy Release Consistency Implementa-

tions. In Proc. of the 2nd IEEE Symposium on High-Performance Computer

Architecture, February 1996.

[2] G. Agrawal and J. Saltz. Interprocedural Compilation of Irregular Applications

for Distributed Memory Machines. In Proc. of Supercomputing ’95, December

1995.

[3] G. Agrawal, J. Saltz, and R. Das. Interprocedural Partial Redundancy Elimi-

nation and its Application to Distributed Memory Compilation. In Proc. of ’95

Conf. on PLDI, pages 258–269, June 1995.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1986.

[5] F. E. Allen. Control Flow Analysis. Proc. of ACM SIGPLAN Notices, 5(7):1–19,

July 1970.

[6] F. E. Allen. Interprocedural Data Flow Analysis. In Proc. of the Information

Processing 74, pages 398–402, Stockholm, Sweden, August 1974.

[7] S. P. Amarasinghe and M. S. Lam. Communication Optimization and Code

Generation for Distributed Memory Machines. In Proc. of ’93 Conf. on PLDI,

pages 126–138, July 1993.

169

170 BIBLIOGRAPHY

[8] C. Amza, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Software dsm protocols

that adapt between single writer and multiple writer. In Proc. of the 3rd HPCA,

pages 261–271, February 1997.

[9] J. M. Anderson and M. S. Lam. Global Optimizations for Parallelism and Local-

ity on Scalable Parallel Machines. In Proc. of ’93 Conf. on PLDI, pages 112–125,

July 1993.

[10] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache man-

agement for distributed shared memory architectures. In Proc. of the 17th ISCA,

pages 125–135, May 1990.

[11] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Distributed

Shared Memory System. In Proc. of the 1993 CompCon Conf., pages 528–537,

February 1993.

[12] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg.

Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In

Proc. of the 21th ISCA, pages 142–153, April 1994.

[13] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson,

and R. Stevens. Portable Programs for Parallel Processors. Holt, Rinehart and

Winston, Inc., 1987.

[14] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran 90D/HPF

Compiler for Distributed Memory MIMD Computers: Design, Implementation,

and Performance Results. In Proc. of Supercomputing ’93, pages 351–360,

November 1993.

[15] M. Burke. An Interval-Based Approach to Exhaustive and Incremental Inter-

procedural Data-Flow Analysis. ACM Transactions on Programming Languages

and Systems, 12(3):341–395, July 1990.

[16] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the ksr1 com-

puter system. Technical report, Kendall Square Research, 1992.

BIBLIOGRAPHY 171

[17] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and per-

formance of Munin. In Proc. of 13th ACM Symposium on Operating System

Principles, October 1991.

[18] C. Chang, A. Sussman, and J. Saltz. Object-Oriented Runtime Support for

Complex Distributed Data Structures. Technical Report CS-TR-3428, University

of Maryland, March 1995.

[19] I. choinas, B. Falasafi, A. R. Lebeck, S. K. Reinhardt, J. R. Laurus, and D. A.

Wood. Fine-grain Access Control for Distributed Shared Memory. In Proc. of

ASPLOS-VI, pages 297–306, October 1994.

[20] F. C. Chow. Minimizing Register Usage Penalty at Procedure Calls. In Proc. of

’88 Conf. on PLDI, pages 85–94, June 1988.

[21] J. Cocke. Global Common Subexpression Elimination. Proc. of a Symposium

on Compiler Optimization, SIGPLAN Notices, 5(7):20–24, July 1970.

[22] J. Cocke and J. T. Schwartz. Programming Languages and Their Compilers.

Courant Institute of Mathematical Science. New York University Press, 2nd edi-

tion, April 1970.

[23] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W. Zwaenepoel.

Software versus hardware shared memory implementation: A case study. In

Proceedings of the 21th ISCA, pages 106–117, 1994.

[24] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-

ciently Computing Static Single Assignment and the Control Dependence Graph.

ACM Transactions on Programming Languages and Systems, 13(3):451–490, Oc-

tober 1991.

[25] R. Das, M. Uysal, J. Saltz, and Y. Hwang. Communication optimizations for

irregular scientific computations on distributed memory architectures. Journal

of Parallel and Distributed Computing, 22(3:462–479, September 1994.

172 BIBLIOGRAPHY

[26] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An Integrated Compile-

Time/Run-Time Software Distributed Shared Memory System. In Proc. of

ASPLOS-VII, pages 186–197, October 1996.

[27] S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J. Scales, M. L. Scott,

and R. Stets. Comparative evaluation of fine- and coarse-grain approaches for

software distributed shared memory. In Proc. of the 5th HPCA, pages 260–269,

January 1999.

[28] M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive Interprocedural

Points-to Analysis in the Presence of Function Pointers. In Proc. of ’94 Conf. on

PLDI, pages 242–256, June 1994.

[29] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: Analyzing

the Performance of Clusterd Distributed Virtutal Shared Memory. In Proc. of

ASPLOS-VII, pages 210–220, October 1996.

[30] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-

nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessors. In Proc. of the 17th ISCA, pages 15–26, May 1990.

[31] M. Haghighat and C. Polychronopoulos. Symbolic program analysis and opti-

mization for parallel compilers. Technical report tr-1237, Center for Supercom-

puting Research and Development, 1993.

[32] M. W. Hall, S.P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S.

Lam. Detecting Coarse-Grain Parallelism Using an Interprocedural Parallelizing

Compiler. In Proc. of Supercomputing ’95, 1995.

[33] M. W. Hall, J. M. Mellor-Brummey, A. Carle, and R. G. Rodriguez. Fiat: A

framework for interprocedural analysis and transformations. In Proc. of the 6th

Int. Workshop on LCPC, pages 522–545. Springer-Verlag, August 1993.

[34] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, and M. S. Lam. Inter-

procedural Analysis for Parallelization. In Proc. of the 8th Int. Workshop on

LCPC. Springer-Verlag, August 1995.

BIBLIOGRAPHY 173

[35] R. Hanxleden and K. Kennedy. Give-N-Take– a balanced code placement frame-

work. In Proc. of ’94 Conf. on PLDI, 1994.

[36] P. Havlak and K. Kennedy. An implementation of interprocedural bounded

regular section analysis. IEEE Transactions on Parallel and Distributed Systems,

2(3):350–360, July 1991.

[37] K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki, N. Imamura, T. Shimizu,

H. Ishihata, and T. Shindo. AP1000+: Architectural support for parallelizing

compilers and parallel programs. In Third Parallel Computing Workshop, pages

P1–F1–P1–F9, November 1994.

[38] High Performance Fortran Forum. High Performance Fortran language specifi-

cation, version 1.0. Technical Report CRPC-TR92225, CRPC-R, January 1993.

[39] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving Release-Consistent

Shared Virtual Memory using Automatic Update. In Proc. of the 2nd HPCA,

February 1996.

[40] L. Iftode, J. P. Singh, and K. Li. Understanding Application Performance on

Shared Virtual Memory Systems. In Proc. of the 23th ISCA, pages 122–133,

May 1996.

[41] T. Inagaki, J. Niwa, T. Matsumoto, and K. Hiraki. Supporting Software Dis-

tributed Shared Memory with a Optimizing Compiler. In Proc. of the 1998 ICPP,

pages 225–234, August 1998.

[42] J. B. Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Re-

lease Consistency. PhD thesis, Department of Computer Science, Rice University,

September 1993.

[43] D. Jiang, H. Shan, and J. P. Singh. Application restructuring and performance

portability on shared virtual memory and hardware-coherent multiprocessors. In

Proc. of the 6th ACM SIGPLAN Symp. on PPOPP, pages 217–229, June 1997.

174 BIBLIOGRAPHY

[44] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. Crl: High-performance

all-software distributed shared memory. In Proc. of 15th ACM Symposium on

Operating System Principles, pages 213–228, December 1995.

[45] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Dis-

tributed Shared Memory on Standard Workstations and Operating Systems. In

Proc. of the Winter 1994 USENIX Conf., pages 115–131, January 1994.

[46] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Soft-

ware Distributed Shared Memory. In Proc. of the 19th ISCA, pages 13–21, May

1992.

[47] P. Keleher and C. Tseng. Enhancing Software DSM for Compiler-Parallelized

Applications. In Proc. of the 11th International Parallel Processing Symposium,

March 1996.

[48] C. Koelbel and P. Mehrotra. Compiling Global Name-Space Parallel Loops for

Distributed Execution. IEEE Transactions on Parallel and Distributed Systems,

2(4):440–451, October 1991.

[49] D. J. Kuck, D. A. Padua R. H. Kuhn, B. Leasure, and M. Wolfe. Dependence

graphs and compiler optimizations. In Proc. of 8th Annual ACM Symposium on

Principles of Programming Languages, pages 207–218, January 1981.

[50] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si Moni, K. Gharachorloo,

J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and

J. L. Hennessy. The Stanford FLASH Multiprocessor. In Proc. of the 21th ISCA,

pages 302–313, April 1994.

[51] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691,

September 1979.

[52] D. E. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hennessy. The

Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In

Proc. of the 17th ISCA, pages 148–159, May 1990.

BIBLIOGRAPHY 175

[53] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proc.

of the 1988 ICPP, pages 94–101, August 1988.

[54] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems.

ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[55] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. Compiler

and Software Distributed Shared Memory Support for Irregular Applications.

In Proc. of 1997 Principles and Practice of Parallel Programming, pages 48–56,

June 1997.

[56] T. Matsumoto. Fine Grain Support Mechnisms. In IPSJ Computer Architecture

SIG Notes, volume 89-ARC-77, pages 91–98, July 1989. (in Japanese).

[57] T. Matsumoto, S. Furuso, and K. Hiraki. Resource management methods of the

general-purpose massively-parallel operating system: SSS–CORE. In Proc. of

11th Conf. of JSSST, pages 13–16, October 1994. (in Japanese).

[58] T. Matsumoto and K. Hiraki. A shared-memory architecture for massively paral-

lel computer systems. In IEICE Japan SIG Reports CPSY, pages 47–55, August

1992. (in Japanese).

[59] T. Matsumoto and K. Hiraki. MBCF: A Protected and Virtualized High-Speed

User-Level Memory-Based Communication Facility. In Proc. of 1998 Interna-

tional Conference on Supercomputing, pages 259–266, July 1998.

[60] T. Matsumoto and K. Hiraki. Memory-Based Communication Facilities and

Asymmetric Distributed Shared Memory. In Proc. of the 1997 International

Workshop on Innovative Architecture for Future Generation High-Performance

Processors and Systems, pages 30–39, Los Alamitos, CA, 1998. IEEE Computer

Society.

[61] T. Matsumoto, T. Komaarashi, S. Uzuhara, and K. Hiraki. The Asymmetric

Distributed Shared Memory using Memory-Based Communication Facilities. In

Proc. of the IPSJ Computer System Symposium, November 1996. (in Japanese).

176 BIBLIOGRAPHY

[62] T. Matsumoto, T. Komaarashi, S. Uzuhara, S. Takeoka, and K. Hiraki. A

General-Purpose Massively-Parallel Operating System: SSS-CORE – Implemen-

tation Methods for Network of Workstations –. In IPSJ SIG Notes, volume

96-OS-73, pages 115–120, August 1996. (in Japanese).

[63] T. Matsumoto, J. Niwa, and K. Hiraki. Compiler-Assisted Distributed Shared

Memory Schemes Using Memory-Based Communication Facilities. In Proc. of

the 1998 PDPTA, volume 2, pages 875–882, July 1998.

[64] E. Morel and C. Renvoise. Global Optimization by Suppression of Partial Re-

dundancies. Communications of the ACM, 22(2):96–103, February 1979.

[65] J. Niwa, T. Inagaki, T. Matsumoto, and K. Hiraki. Efficient Implementation of

Software Release Consistency on Asymmetric Distributed Shared Memory. In

Proc. of the 1997 ISPAN, pages 198–201, December 1997.

[66] J. Niwa, T. Inagaki, T. Matsumoto, and K. Hiraki. Performance Evaluation

of Compiling Techniques on Asymmetric Distributed Shared Memory. IPSJ

Transactions on Parallel Processing, 39(6):1729–1737, June 1998. (in Japanese).

[67] J. Niwa, T. Inagaki, T. Matsumoto, and K. Hiraki. Evaluation of Compiler-

Assisted Software DSM Schemes for a Workstation Cluster. In Proc. of the 1999

International Workshop on Innovative Architecture for Future Generation High-

Performance Processors and Systems, Los Alamitos, CA, 2000. IEEE Computer

Society. Accepted for publication.

[68] J. Niwa, T. Inagaki, Takashi Matsumoto, and Kei Hiraki. Compiling Techniques

on Asymmetric Distributed Shared Memory. In IPSJ High Performance Comput-

ing SIG Notes, volume 97-HPC-67, pages 121–126, August 1997. (in Japanese).

[69] J. Niwa, T. Inagaki, Takashi Matsumoto, and Kei Hiraki. Compiling Tech-

niques for ADSM on General-Purpose Massively-Parallel Operating System:

SSS-CORE. JSSST Journal of Computer Software, 15(3):54–58, May 1998.

BIBLIOGRAPHY 177

[70] J. Niwa, T. Matsumoto, and K. Hiraki. Evaluation of Compiler-Assisted Software

DSM Schemes: ADSM and UDSM. In IPSJ High Performance Computing SIG

Notes, volume 99-HPC-77, pages 95–100, August 1999. (in Japanese).

[71] O. Shiraki and Y. Koyanagi and N. Imamura and K. Hayashi and T. Shimizu and

T. Horie and H. Ishihata. Architecture of highly parallel computer AP1000+. In

Third Parallel Computing Workshop, pages P1–G–1–P1–G–8, November 1991.

[72] M. O’Boyle and F. Bodin. Compiler Reduction of Synchronization in Shared

Virtual Memory Systems. In Proc. of 1995 International Conference on Super-

computing, pages 318–327, July 1995.

[73] The OpenMP Forum. OpenMP C and C++ Application Program Interface,

October 1998. http://www.openmp.org.

[74] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon: User-

Level Shared Memory. In Proc. of the 21st Annual International Symposium on

Computer Architecture, April 1994.

[75] J. Saltz, R. Mirchandaney, and J. Crowley. Run-Time Parallelization and

Scheduling of Loops. IEEE Transactions on Computers, 40(5):603–611, 1991.

[76] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVM protocols

for SMP clusters: Design and Performance. In Proc. of the 4th HPCA, pages

113–124, 1998.

[77] D. J. Scales and K. Gharachorloo. Design and Performance of the Shasta Dis-

tributed Shared Memory Protocol. In Proc. of 1997 International Conference on

Supercomputing, pages 245–252, July 1997.

[78] D. J. Scales and K. Gharachorloo. Performance of the Shasta Distributed Shared

Memory Protocol. Research Report 97/2, DEC Western Research Laboratory,

February 1997.

178 BIBLIOGRAPHY

[79] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A Low Overhead,

Software-Only Approach for Supporting Fine-Grain Shared Memory. In Proc.

of ASPLOS-VII, pages 174–185, October 1996.

[80] D. J. Scales and M. S. Lam. The Design and Evaluation of a Shared Object

System for Distributed Memory Machines. In Proc. of the 1st OSDI, November

1994.

[81] Sun Microsystems Inc. The Java Language Specification, 1996. Also available

at http://java.sun.com/docs/books/jls/.

[82] R. P. Wilson. Efficient Context-Sensitive Pointer Analysis for C Programs. PhD

thesis, Stanford University, December 1997.

[83] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,

S. W. K. Tjiang, S. Liao, M. W. Hall C. Tseng, M. S. Lam, and J. L. Hennessy. An

overview of the SUIF compiler system. http://suif.stanford.edu/suif/suif1/suif-

overview/suif.html.

[84] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C

Programs. In Proc. of ’95 Conf. on PLDI, pages 1–12, June 1995.

[85] M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an Algorithm to

Maximize Parallelism. IEEE Transactions on Parallel and Distributed Systems,

pages 452–471, October 1991.

[86] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

Programs: Characterization and Methodological Considerations. In Proc. of the

22nd ISCA, pages 24–36, June 1995.

[87] M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad. Software Write Detection

for a Distributed Shared Memory. In Proc. of the 1st Symp. on OSDI, November

1994.

BIBLIOGRAPHY 179

[88] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based Lazy

Release Consistency Protocols for Shared Virtual Memory Systems. In Proc. of

the 2nd Symp. on OSDI, 1996.

[89] Y. Zhou, L. Iftode, K. Li, J. P. Singh, B. R. Toonen, I. Schoinas, M. D. Hill,

and D. A. Wood. Relaxed Consistency and Coherence Granularity in DSM

Systems: A Performance Evaluation. In Proc. of the 6th ACM SIGPLAN Symp.

on PPOPP, pages 193–205, June 1997.

