
Compiler-Assisted Distributed Shared Memory Schemes
Using Memory-Based Communication Facilities

Takashi Matsumoto, Junpei Niwa, Kei Hiraki
Department of Information Science, Faculty of Science

University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
ftm, niwa, hirakig@is.s.u-tokyo.ac.jp

Abstract To execute shared-memory-based parallel pro-
grams efficiently, we introduce two compiler-assisted soft-
ware cache schemes which are well-suited to automatic op-
timizations of remote communications. One scheme is a
full user-level software cache (User-level Distributed Shared
Memory: UDSM) and another is a page-based cache (Asym-
metric Distributed Shared Memory: ADSM) which exploits
TLB/MMU only in the cases of read-access-misses. Under
these schemes we can apply several optimizing techniques,
which exploit capabilities of the middle-grained or coarse-
grained remote-memory-accesses, to reduce the number and
the amount of communications. We also introduce a high-
speed user-level communication and synchronization scheme
“Memory-Based Communication Facilities (MBCF)” for pro-
viding the capabilities in a general-purpose system with off-
the-shelf communication-hardware. In this paper, we explain
outline of our approach, the UDSM and the ADSM, the MBCF,
and optimizing techniques for remote communications. Fi-
nally we show experimental results on effects of our proposed
approach using our prototype optimizing compiler “Remote
Communication Optimizer (RCOP)” and the MBCF on Fast
Ethernet.

Keywords: Software DSM, Optimizing Compiler, Memory-
Based Communication Facilities, Asymmetric Distributed
Shared Memory, User-level Distributed Shared Memory

1 Introduction
It is difficult to execute shared-memory-based par-
allel programs (e.g. SPLASH-2[1]) efficiently on
distributed-memory parallel systems without hardware-
remote-cache mechanisms. In the usual cases we need
to modify and rewrite those programs to fit them into
the distributed-memory systems. A way in which we
can avoid the rewriting is to utilize software Distributed
Shared Memory (DSM) mechanisms supported by the
Operating System (OS). We can receive the benefits of
caches from the conventional software DSM, but the

cache-miss penalty and the coherence overhead are still
large. Because of the penalty and the overhead, we
cannot attain good results through the approach using
conventional software DSM.

In this paper we introduce a brand-new approach
to solve this problem. Our approach is a combination
of user-level cache emulation and optimizing compiler.
Our goal is to realize efficient execution of shared-
memory-based parallel programs with automatic opti-
mizations for remote communications under a general-
purpose operating system on a stock network of work-
stations. If we use some conventional OS-based (page-
based) software DSM, procedures for cache mainte-
nances are invisible from user-level codes and it is diffi-
cult for optimizing compilers to optimize the procedures
with user-level application codes. On the other hand,
user-level codes for cache maintenances increase op-
portunities of code optimizations. Therefore, we adopt
user-level cache emulations (i.e. user-level software
DSMs).

We have developed an optimizing compiler (RCOP:
Remote Communication Optimizer) for our approach
and it has run-time libraries for the user-level cache em-
ulations. RCOP analyzes memory accesses in a target
application program, finds requests for remote mem-
ory accesses, inserts check and maintenance codes for
caches of remote data, reduces redundant cache main-
tenance codes, and reduces the number of communica-
tions by merging packets.

We also introduce a novel protected and virtual-
ized high-speed user-level communication and syn-
chronization scheme “Memory-Based Communication
Facilities (MBCF)” for a general-purpose distributed-
memory system with off-the-shelf communication-
hardware. The MBCF is suited to our approach of effi-
cient executions of shared-memory-based parallel pro-
grams. For programmers and compilers, the MBCF pro-
vides methods for the direct remote memory accesses in
user task spaces.



2 Our Approach
Our basic strategies for efficient executions of shared-
memory-based parallel programs are as follows.

1. Automatic translations/compilations from source
programs

2. Shared-memory-based data allocation

3. Inserting user-level cache emulation codes

4. Using explicit communication codes for remote ac-
cesses

5. Optimizing remote communications

� Reducing cache maintenance codes

� Reducing the number of communications

� Tuning data-size of a communication packet

Our automatic optimizer exploits the information
of source programs. To handle memory pointers to
the shared objects elegantly, we assmue the shared-
memory-based data allocation. It supposes that the local
virtual addresses of a shared data object are identical in
every node of the system, so that the system and applica-
tions easily can identify shared data objects. However,
we assume that there is neither remote-memory access
hardware nor hardware DSM in the system. Therefore,
we must replace remote-memory-accesses with alterna-
tive codes which invoke explicit operations to perform
them. If we use an executable object where every remote
access is replaced with an explicit remote communica-
tion code, there are too many fine-grained communica-
tions and the very large accumulated overhead degrades
the execution speed. We need to reduce the number of
communications as much as possible. The first step of
the reduction is to introduce a kind of cache system in
our execution environment. We adopt the user-level
(application-level) implementation of software DSM,
since user-level codes for cache maintenances increase
opportunities of code optimizations. We need to insert
explicit cache-emulation codes at the candidate points
where remote accesses occur. If our analyzer cannot find
whether a memory access at a candidate point is remote
or local, our optimizer inserts an address-range check-
ing code before cache-emulation code in order to decide
necessity of a remote access. Cache-emulation codes
perform explicit remote communications if necessary.

Simple replacements from remote-accesses to cache-
emulation codes are still redundant and leave room to
optimize remote communications. We will describe the
details of our optimizing techniques in section 5.

We assume that commodities (e.g. Fast ethernet)
are used as the communication hardware of the sys-
tem. Such mechanisms have non-negligible overhead of

communication and hence they are poor at fine-grained
communications. Since there is a limit for the size of
the sending buffer in the communication hardware, they
cannot efficiently send large data over the limit at a time.
While keeping the meaning of parallel programs, it is
advantageous on performance to adjust the data-size of
communication packets statically or dynamically.

3 UDSM and ADSM
Considering code optimizations for inter-node commu-
nications, the full user-level cache scheme (User-level
DSM:UDSM), where application programs only use
user-level codes to maintain software-remote-caches, is
better than OS-based software DSMs. In other words,
the UDSM scheme is more suitable to exploit oppor-
tunities for the optimizations of communications and
executions than OS-based DSMs.

In the UDSM case, however, the user-level exe-
cutable code must explicitly maintain, check and mod-
ify software-controlled-cache tags. It is a little difficult
to develop optimizing compilers that are sophisticated
enough to hide and/or reduce the overhead of handling
cache tags. Inter-node communications are required
only at shared-write or cache-miss situations. If we use a
large area of memory as a software-controlled-cache we
can keep the rate of cache-miss small. Besides, in usual
applications the number of shared-writes is much less
than the number of shared-reads. These characteristics
suggest us a brand-new remote cache scheme “Asym-
metric Distributed Shared Memory (ADSM)” [2, 3].

In conventional page-based (i.e. OS-based) DSMs,
not only read-cache-misses but also shared-writes are
supported by the TLB/MMU mechanisms of node pro-
cessors using write-protection traps and page-fault traps.
Though the ADSM is one of page-based cache schemes,
only read-cache-misses are supported by the TLB/MMU
mechanisms. For each shared-write in the ADSM
scheme, a proper sequence of instructions which main-
tains the cache consistency of the system is inserted into
the user-level executable code by the optimizing com-
piler. The user-level code-sequences include the explicit
communication procedures and invalidate (or update)
remote caches while modifying the local cache-states.

The ADSM has less opportunities for the opti-
mizations of communications and executions than the
UDSM, because codes for shared-reads are implicitly
supported by OS and the cache block-size of the ADSM
should be equal to the size of a memory-page. In
the ADSM, however, there is still large room for var-
ious optimizations using inserted cache maintenance
codes. The strategy for handling shared-reads (read-
cache-misses) and that for handling shared-writes are
different. Therefore we call this scheme the “asymmet-



ric” DSM.
Which of the UDSM and the ADSM should we use?

The answer depends on system parameters: optimiza-
tion level of the compiler, memory access pattern of
application programs, software cost of checking cache
tags, and cost of the page-fault trap.

4 Memory-Based Communication
Facilities

4.1 Needs of the MBCF
Conventional user-level communication interfaces (e.g.
socket library or MPI) of existing operating systems
are useless for realizing our goal because of their large
overheads. Therefore, we proposed a protected and
virtualized high-speed user-level communication and
synchronization scheme “Memory-Based Communica-
tion Facilities (MBCF)”[2, 4] for a general-purpose sys-
tem with off-the-shelf communication-hardware. There
are two factors which produce the major part of over-
heads on the conventional interfaces. The first one is a
methodological aspect (including functionalities, proto-
cols, packet format). Conventional communication in-
terfaces are message-passing-type ones, and their func-
tions are limited to remote-write operations into a few
specific message-buffer addresses in the kernel-space.
To break out of this limitations, we adopt memory-based
operations where arbitrary target addresses and a wide
variety of functions can be used. Moreover, a middle-
grained or coarse-grained direct remote-memory-access
capability provided by the MBCF is fit to communi-
cation optimizations of the UDSM and the ADSM.
Middle-size or large-size amount of data can be han-
dled in an MBCF operation and multiple MBCF oper-
ations can be merged into one communication packet
by communication optimizations. The other factor of
overhead is a software engineering aspect (implementa-
tion methodology). In the conventional OSs, communi-
cations and synchronizations among nodes (machines)
are regarded as usual I/O events like disk operations,
and device-drivers for communications and synchro-
nizations have the same data and control structures as
device-drivers for other I/O devices. Consequently, the
device-drivers suffer large overheads that are not neces-
sary for functions of communication and synchroniza-
tion. To realize high-performance implementations, the
MBCF-dedicated system-calls and the MBCF-dedicated
interrupt routines have been developed and used, then
there is no operation irrelevant to the functions of the
MBCF.

4.2 Outline of the MBCF
In the MBCF scheme, communications and synchro-
nizations are performed through virtual inter-node mem-

ory locations. An address of some location is specified
the combination of a logical task-ID and a logical ad-
dress in the target logical task. The task is an abstraction
of a processor’s activity and has its own memory-space,
and it belongs to a node in the MBCF system. In the
MBCF system, a task is specified by the combination
of a physical node-ID and a physical task-ID in the
physical-node. In user-level application programs, only
the logical task-ID is used to specify a task. The OS for
the MBCF system maintains one translation table for
each task, and translates a logical task-ID into the com-
bination of a physical node-ID and a physical task-ID.

In the MBCF system remote memory accesses are
invoked by explicit system-calls for the MBCF func-
tions. First a user-program prepares an MBCF packet in
user-mode and executes the MBCF requesting system-
call. The packet includes a target logical task-ID, a
target logical address, an access-key of the target task,
a command (type of memory operation), a few param-
eters of the command (optional), a return address of
status reply (optional), and the size of data and data
to be sent. Secondly the kernel-level routine of the
MBCF-dedicated requesting system-call makes a inter-
node communication-style packet and transmit it us-
ing conventional Network Interface Cards. Finally the
MBCF-dedicated interrupt routine at the target node re-
ceives the packet, checks the access-key and directly
executes the remote access specified in the packet and
returns a reply if necessary. The command variation
of the MBCF includes simple remote-memory-accesses
(read and write), remote-memory-accesses with flag
operations, atomic operations (swap, test&set, com-
pare&swap), multi-casting operations (invalidate and
update), memory-based fifo[5, 4], and memory-based
signal[5, 4].

By adopting memory-based operations, protection
and virtualization in communications and synchroniza-
tions can be replaced with those of memory accesses.
This replacement makes high-speed implementations of
the MBCF scheme feasible, since advanced architec-
tural mechanisms of processors for memory-accesses
can be exploited. Each entry of the Translation Look-
aside Buffer (TLB) in a recent processor has a field for
context identifier (context-ID) and the OS for the pro-
cessor can switch contexts without clearing entries of
the TLB. In the MBCF interrupt routine, each MBCF
packet requires a few page-entries to be used for direct
memory-accesses to the target space. With this type of
advanced TLB, the MBCF interrupt routine replaces at
most only a few entries of the TLB. If the MBCF oper-
ations access the same locations frequently, it is likely
that the page entries corresponding to the locations are
resident in the TLB. The cost of the replacement itself is
small and the influence of the MBCF operations is also



very small after the MBCF interrupt.

5 Optimizing Techniques
RCOP deals with a parallel shared memory program
based on lazy release consistency (LRC) model[6].
The input program is written in C extended by
PARMACS[7]1. RCOP analyzes the shared memory
program and translates it into a instrumented C pro-
gram which explicitly contains consistency management
codes for the ADSM. The output C code is compiled by
the backend compiler, then linked with the ADSM run-
time library to generate executable code. We used gcc
2.7.2 (the optimizing level is -O2) as the backend com-
piler.

In the ADSM runtime system, write transactions on
shared locations are represented as a pair of a shared
address and a byte size of a written block. This pair
is generated by a commitment of shared write and is
stored directly at runtime (we call this pair as a write
commitment). Though it is implicit to commit shared
write, contents of written shared location are also re-
quired. Consequently, we place a write commitment
after the shared write in question.

In order to reduce both communication overheads
and instruction overheads for consistency management
codes, RCOP requires to insert valid and optimal write
commitments. First, we have to detect all the shared
write operations. Second, we calculate redundancy
among shared write operations.

5.1 Detecting Shared Write

In order to detect which write operation accesses to a
shared location, we have to identify which pointer value
points to a shared address. We adopted interprocedu-
ral points-to analysis[8, 9] to detect pointers to shared
locations.

Applying the points-to analysis to shared write de-
tection is straightforward. We track pointer values cre-
ated by G MALLOC (dynamic shared memory alloca-
tion), and enumerate write operations using them.

5.2 Eliminating Redundant Write Com-
mitments

In LRC models, commitments of modifications in shared
locations are delayed until a synchronization point
to avoid frequent invalidations and communications.
Therefore we can place a write commitment anywhere
from the shared write in question to the next synchro-
nization primitive.

Let us look the following code fragments:

1PARMACS is a parallel macro construction that contains shared
memory allocation, thread creation, and synchronization

a[ii][jj]=((double)lrand48())/MAXRAND;
if (i == j)

a[ii][jj] *= 10;

Suppose the location a[ii][jj] is shared, both as-
signments require the same consistency management
code (WC). But, if we delay the commitment after
the conditional statement, the consistency management
code in the conditional clause is redundant.

a[ii][jj]=((double)lrand48())/MAXRAND;
if (i == j)

a[ii][jj] *= 10;
WC (&a[ii][jj], 1);

This optimization is formalized as write commit-
ment redundancy elimination like common subexpres-
sion elimination[10]. For simplicity, we consider one
fixed shared write operation. We represent a statement

AVIN(i) =
Y

p2pred(i)

AVOUT(p)

AVOUT(i) = COMP(i) + TRANS(i) � AVIN(i)

ANTOUT(i) =
Y

s2succ(i)

ANTIN(s)

ANTIN(i) = COMP(i) + TRANS(i) � ANTOUT(i)

INSERT(i) = AVOUT(i) � :

0
@ Y

s2succ(i)

AVOUT(s)

1
A

�:ANTOUT(i)
Figure 1: Dataflow equation to remove redundant write
commitments

in a procedure as i. We can consider that i is a node of a
control flow graph (CFG) of the procedure. To remove
redundant commitments, we calculate the following two
dataflow variables for each statement i

Availability All preceding statements to iwrite into the
shared location.

Anticipatability All succeeding statements to i write
into the shared location.

Both availability and anticipatability take values of
true or false, and are calculated from two kinds of con-
stants about i.

COMP(i) Statement i writes into the shared location.

TRANS(i) Statement i propagates information above
and below.

Transparency is false if i is a synchronization primitive
or if i modifies parameters of the shared write.

In order to minimize the number of shared write com-
mitments, we have only to insert a write commitment



where 1) the shared write is available, 2) the shared write
is not available at its successors and 3) the shared write
is not anticipatable.

We denote availability before and after execution
of the statement i as AVIN(i) and AVOUT(i). Sim-
ilarly, we represent anticipatability as ANTIN(i) and
ANTOUT(i). The dataflow variable INSERT(i) reflects
whether or not the write commitment is really inserted
after i. Each dataflow variable is computed from the
equations described in Figure12.

In order to compute interprocedurally, we reflect
AVOUT at the exit of the callee procedure to the COMP
at the call site of the caller procedure. When the avail-
ability of the callee can not be propagated to the caller,
we insert write commitments at the exit of the callee.
An open[11] procedure does not propagate availability
to the call sites. Therefore, we can consider the call
graph is acyclic. RCOP simply calculates interproce-
dural availability with bottom-up traversal of the call
graph.

5.3 Handling Multiple Shared Writes
Because a write commitment contains a size informa-
tion, we can calculate redundancy between multiple
shared write operations. For example, suppose a is
a shared pointer in the following code.

for (i=0; i<n; i++)
a[i] += alpha*b[i];

Instead of inserting a write commitment after each write
operation, we can generate the following code:

for (i=0; i<n; i++)
a[i] += alpha*b[i];

WC (a, n);

The advantage of this optimization is as follows. First,
the instruction overhead for consistency management is
alleviated. Second, the ADSM runtime system utilize
the size information for message vectorization.

It is convenient to denote multiple write commit-
ments as a shared write set. A shared write set W
consists of a tuple (f; s;C). f and s are respectively the
shared address and the size of each contiguous region
to be written, and C is a set of inequalities to generate
instances. Usually, f , s, and C contain common index
variables, so f = f(~i), s = s(~i),C = C(~i). Informally,
a shared write set corresponds to a sequence of consis-
tency management codes. f and s are arguments of
one write commitment, and C corresponds to enclosing
loops. We describe optimization methods using shared
write sets.

2pred(i) is a set of preceding statements to i and succ(i) is a set
of succeeding statements to i.

5.3.1 Coalescing

This is applicable when write commitments onto con-
tiguous locations are issued in a loop. For a shared write
set W = (f(i); s; C(i)), suppose that we want to test
whether we can coalesce about an induction variable
i, whose stride is c. This is examined by an equation
f(i + c) � f(i) = s. When this condition holds, we
replace i by its initial value and multiply s by number
of iterations and eliminate inequalities about i. For the
above code, the transformation is like this:

W = (&a[i]; 1; f0 � i < ng)! W 0 = (a; n; ;)

Even if the index is not an induction variable, it is pos-
sible to perform this translation when the index is only
contiguous.

5.3.2 Fusion

Originally, each shared write set corresponds to each
shared write operation in the program. Sometimes we
can merge a series of shared write sets into a new large
one. We call this transformation fusion, and express it
by a binary operator “�”. The most simple case is when
we can detect contiguous shared write accesses from
locally like this:

for (i=0; i<n1; i++) {
x[2*i] /= N; x[2*i+1] /= N;

}

Suppose x points to a shared location, each write oper-
ation generates shared write sets in the for loop,

W = (&x[2 � i]; 1; ;); W 0 = (&x[2 � i+ 1]; 1; ;):

Using similar test to coalescing, we can obtain

W �W 0 !W 00 = (&x[2 � i]; 2; ;):

5.3.3 Redundant Index Elimination

When the location of a shared write set is loop-invariant,
the shared write set is represented as a single write com-
mitment whose size is the maximum of all the iterations.
We can detect the above case using the Fourier-Motzkin
pairwise elimination[13]. The Fourier-Motzkin elimi-
nation is also applicable to non-linear but monotonous
index expressions. For example,

W = (x; 2 � 2q � (N=2q); f1 � q �Mg)

Since x is loop-invariant about q and 2 � 2q � (N=2q) is
monotonously decreasing function of q, we can elimi-
nate q from the C of W as follows.

W !W 0 = (x; 4 � (N=2); ;)



5.3.4 Putting All Together

We integrate the above optimizations: coalescing, re-
dundant index elimination and fusion using shared write
sets. The dataflow variables in the Figure1 take values
of shared write sets. The logical operations are con-
sidered as set operations. Just after points-to analysis,
each write set includes only one write commitment, i.
e., s = 1; C = ;.

We use interval analysis[14, 15] to calculate dataflow
equations. We create a summary of each interval or call
site in a bottom up manner. Coalescing and redundant
index elimination are applied to a summary of an interval
and to a summary of a call site which is created by
a parameter mapping on a summary of a procedure.
Fusion is tried when we merge multiple shared write sets
at a merge point in the program or between propagated
values and computed values.

6 Performance Evaluation

6.1 ADSM
We have implemented a prototype of RCOP and the
runtime system of the ADSM on the SSS–CORE/NOW
ver.1.0. Current SSS–CORE is working on 8 nodes
of Axil 320 model 8.1.1 (which is compatible with
Sun SPARCstation 20, with one 85MHz SuperSPARC).
Each node is equipped with Fast Ethernet SBus
Adapter2.0, and are connected by Fast Ethernet with a
100BASE-TX switch. The SSS–CORE implements the
MBCF on the Fast Ethernet. Its measured peak band-
width is 11.2MB/s and its round-trip latency is 49�s.

Because the SSS–CORE/NOW ver.1.0 has not sup-
ported user-level page-fault handlers yet, we cannot de-
tect page fault via traps. In order to detect that the
processor attempts to access the shared page which is
not allocated or invalid, we insert the code checking the
corresponding page’s validity before each shared ac-
cess. The messages which request memory-copies or
cache invalidations are serviced through the memory-
based signal mechanism of the MBCF. As for the cache
consistency protocol, we adopt the SAURC protocol[2]
which is a variation of the LRC protocols[6] and emu-
lates the AURC protocol[16] with explicit communica-
tion codes.

We evaluate the performance on LU-Contig and
Radix of SPLASH-2 benchmark suit[1] using 8 nodes.
The problem size of LU-Contig is a 512�512 matrix
with 16�16 blocks and that of Radix is 1M sorting
keys. Table1 shows the results of LU-Contig. Table2
shows the results of Radix.

For each table, we evaluate three optimization meth-
ods for the ADSM: “NO” describes no optimizations,
“MB” denotes the runtime packet combining and “IA”

represents the static interprocedural redundancy elimi-
nation. The “Opt” column in the tables expresses the
combination of the optimization methods which are ap-
plied to the corresponding measurement. The “#CM”
column shows the number of consistency management
codes.

Since LU-Contig is a simple application in which the
processor accesses the contiguous locations, RCOP can
find many opportunities to perform coalescing. Con-
sequently the number of write commitments (i.e., con-
sistency management codes) is greatly reduced. As for
Radix, there are a few opportunities to perform coalesc-
ing optimization using induction variables. But we can
perform coalescing by using a contiguous variable and
this produces good results. The runtime level packet
combining is also effective for both applications.

6.2 UDSM
We can apply similar optimization to the write com-
mitment redundancy elimination for shared page table
checking. Successive checks of contiguous shared lo-
cations are coalesced and executed before the enclosing
loop. We perform this shared-read optimization man-
ually by rewriting output codes which RCOP for the
ADSM generates.

In order to show how efficient the UDSM scheme is,
we evaluate the performance on the above benchmarks
using not only the SSS–CORE but also a multicomputer
Fujitsu AP1000+[17]. In the AP1000+, each node con-
sists of 50MHz Super SPARC with 20 Kbytes I-cache,
16 Kbytes D-cache and 16MB memory. Nodes are in-
terconnected by a 2-D torus network whose bandwidth
is 25 Mbytes/sec per link. The AP1000+ has dedicated
hardware which executes remote block transfer opera-
tion (put/get interface). Request messages from remote
nodes are serviced through polling mechanism. We in-
sert polls at every loop backedge and every function
call.

Table3 shows the input problem size and sequen-
tial execution time. It also shows the single processor
execution time with shared page table checking3, along
with the percentage increase in the time over the original
sequential time. In LU-Contig, because the processor
accesses the contiguous locations, many shared page
table checks are coalesced and the check overhead is
reduced.

Figure2 shows the execution time of LU-Contig on
1 to 8 nodes. Figure3 shows the results of Radix. The
left part of each graph gives the results on the AP1000+.
The right part of each graph gives the results on the
SSS–CORE. “Task” means execution time of the origi-
nal application codes. Page table checking and polling

3Polling overheads are also included in AP1000+



Table 1: Effects of optimization methods on LU-Contig (n=512,b=16)
Opt Exec Time #CM Number Of Data Traffic

(sec) Packets (MByte)
NO 28.199637 5592384 5206567 47.728956
MB 14.351349 5592384 83515 113.002224
IA 2.174304 1430 7731 9.424220

MB & IA 2.160257 1430 7599 9.274476

Table 2: Effects of optimization methods on Radix (#key = 1M)
Opt Exec Time #CM Number Of Data Traffic

(sec) Packets (MByte)
NO 21.904937 792831 3220108 76.717636
MB 12.131433 792831 75832 101.082236
IA 1.565786 2079 19457 13.471372

MB & IA 1.236287 2079 10148 13.626328

Table 3: Sequential execution time(in seconds) and checking overheads
SSS–CORE AP1000+

program problem size sequential with check sequential with check
time overhead time overhead

LU-Contig 10242 doubles 59.000 60.096(2%) 115.673 125.00(8%)
Radix 1M integer keys 1.817 2.240(18%) 4.325 5.535(21%)

0

40

80

120

1 2 4 8 1 2 4 8

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Sync

WC

PF

Msg

Task

¾Í®¨ ÐÐÐªÀÌÏÂ

Figure 2: Execution time of LU-Contig on 1 to 8 nodes

overhead are also included in “Task”. “Sync”, “WC”,
and “PF” respectively mean execution time spent in syn-
chronization, write commitment, and page fault handler.
“Msg” means time in remote message handlers. Note
that “Msg” also contains handling time of messages
which are caught by polling in synchronization, write
commitment, and page fault. Consequently, “Sync”,
“WC”, and “PF” consist of their inherent local overhead
and pure idle time waiting for responses from other pro-
cessors.



¯

±

³

1 2 4 8 1 2 4 8

E
xe

cu
tio

n
 T

im
e

(s
e

c)

Sync

WC

PF

Msg

Task

¾Í®¨ ÐÐÐªÀÌÏÂ

Figure 3: Execution time of Radix on 1 to 8 nodes

Overall, the speedups achieved by the UDSM opti-
mization are quite promising. This result indicates that
when the MBCF is given, the performance of a worksta-
tion cluster with off-the-shelf communication-hardware
is as good as that of a multicomputer with special high-
speed communication-hardware.

As for LU-Contig, in both platforms WC time is neg-
ligible by the UDSM optimization. About Radix, WC
time in the SSS–CORE is relatively high, but in the
AP1000+ it is negligible. The write commitments are
merged as large as possible and delayed as far as pos-
sible in order to detect redundancy. This optimization



policy does not always produce good results for the plat-
forms that have poor communication-hardware compar-
ing with processor power because they cannot send large
data over the limit at a time. The result indicates that the
relation between processor power and communication-
hardware must be reflected in the dataflow equation.

7 Conclusions
To execute shared-memory-based parallel programs ef-
ficiently, we introduced two compiler-assisted software
cache schemes and a user-level memory-based com-
munication mechanism. The cache schemes are User-
level Distributed Shared Memory (UDSM) and Asym-
metric Distributed Shared Memory (ADSM). Under
these cache schemes we can apply several optimizing
techniques to reduce the number and the amount of
communications. The communication mechanism is
a high-speed user-level communication and synchro-
nization scheme “Memory-Based Communication Fa-
cilities (MBCF)” for a general-purpose system with
off-the-shelf communication-hardware. The MBCF is
superior to conventional communication interfaces and
suited to optimizations for the UDSM and the ADSM.
We have developed our prototype optimizing compiler
“Remote Communication Optimizer (RCOP)” for the
ADSM scheme and made experiments to show the ef-
fects of the combination of our cache schemes, optimiz-
ing techniques and the MBCF. The result shows that our
approach is promising to realize efficient executions of
shared-memory parallel programs on a general-purpose
system like a network of workstations which has no
dedicated communication hardware.

Acknowledgments
This work is partly supported by Advanced Information Tech-
nology Program (AITP) of Information-technology Promotion
Agency (IPA) Japan and by Real World Computing Partner-
ship (RWCP) Japan. Authors thank Mr. Tatsushi Inagaki for
his collaboration on our compiler research.

References
[1] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and

A. Gupta. The SPLASH-2 Programs: Charac-
terization and Methodological Considerations. In
Proc. of the 22nd ISCA, pages 24–36, June 1995.

[2] T. Matsumoto, T. Komaarashi, S. Uzuhara,
S. Takeoka, and K. Hiraki. A general-purpose
massively-parallel operating system: Sss–core —
implementation methods for network of work-
stations —. IPS Japan SIG Reports 96-OS-73,
96(79):115–120, aug, 1996. (In Japanese).

[3] T. Matsumoto and K. Hiraki. Memory-Based
Communication Facilities and Asymmetric Dis-
tributed Shared Memory. In Innovative Architech-
ture for Future Generation High-Performance
Processors and Systems, pages 30–39. IEEE Com-
puter Society Press, April 1998.

[4] T. Matsumoto and K. Hiraki. MBCF:A Protected
and Virtualized High-Speed User-Level Memory-
Based Communication Facility. In Proc. of the
1998 Int. Conf. on Supercomputing, July 1998. to
appear.

[5] T. Matsumoto and K. Hiraki. A shared-
memory architecture for massively parallel com-
puter systems. IEICE Japan SIG Reports CPSY,
92(173):47–55, August, 1992. (In Japanese).

[6] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
Release Consistency for Software Distributed
Shared Memory. In Proc. of the 19th ISCA, pages
13–21, May 1992.

[7] J. Boyle et al. Portable Programs for Parallel Pro-
cessors. Holt, Rinehart and Winston, Inc., 1987.

[8] M. Emami, R. Ghiya, and L. J. Hendren. Context-
Sensitive Interprocedural Points-to Analysis in the
Presence of Function Pointers. In Proc. of ’94
Conf. on PLDI, pages 242–256, June 1994.

[9] R. P. Wilson and M. S. Lam. Efficient Context-
Sensitive Pointer Analysis for C Programs. In
Proc. of ’95 Conf. on PLDI, pages 1–12, June 1995.

[10] J. Cocke. Global Common Subexpression Elimi-
nation. Proc. of a Symp. on Compiler Optimization,
SIGPLAN Notices, 5(7):20–24, July 1970.

[11] F. C. Chow. Minimizing Register Usage Penalty
at Procedure Calls. In Proc. of the SIGPLAN ’88
Conf. on PLDI, pages 85–94, June 1988.

[12] J. Niwa, T. Inagaki, T. Matsumoto, and K. Hi-
raki. Efficient Implementation of Software Release
Consistency on Asymmetric Distributed Shared
Memory. In Proc. of the 1997 ISPAN, pages 198–
201, December 1997.

[13] G. B. Dantzig and B. C. Evans. Fourier-Motzkin
Elimination and Its Dual. Journal of Combinato-
rial Theory, A(14):288–297, 1973.

[14] J. Cocke and J. T. Schwartz. Programming Lan-
guages and Their Compiler. New York University
Press, 2nd edition, April 1970.

[15] M. Burke. An Interval-Based Approach to Ex-
haustive and Incremental Interprocedural Data-
Flow Analysis. ACM Trans. on Programming Lan-
guages and Systems, 12(3):341–395, July 1990.

[16] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Im-
proving Release-Consistent Shared Virtual Mem-
ory using Automatic Update. In Proc. of the 2nd
HPCA, February 1996.

[17] O. Shiraki et al. Architecture of Highly Parallel
Computer AP1000+. In Proc. of the 3rd Parallel
Computing Workshop, pages P1–G–1 – P1–G–8,
November 1994.


