
Study on Kernel Level Scheduling in SSS–CORE:

A General-Purpose Massively-Parallel Operating System

汎用超並列オペレーティングシステム SSS–COREにおける

カーネルスケジューリング方式の研究

by

Yojiro Nobukuni

信国陽二郎

Master Thesis

Submitted to

The Graduate School of

The University of Tokyo

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Information Science

February 5, 1997

Thesis Supervisor: Kei Hiraki

Title: Professor of Information Science



Acknowledgments

One day in our laboratory room, which is located at 4th floor in the building 7 of faculty of science,

I finally faced with an incident. I was taking a break. I left the Ultra Parallel Project room and

went back to the room 414 with a coffee cup in my hand. I wanted a cup of coffee, just as usual

break time. When I stepped into room 414, it happened. HE WAS THERE. Pouring the very last

spoon of coffee powder into his cup. A small bottle of ordinal instant coffee had been bought to

fill our stomach. I came up to in front of his face but he never stop pouring hot water. He knew

that I was there. Loughing and talking to me. When he has done with his project, he said “Well,

I’ll give you back a bootle of good coffee beans.” What? If you are saying it, how come you didn’t

use that beans for yourself and consume the maybe not good instant coffee that could have delight

myself.

Well, he is my boss. He has done a lot of work to help my study and refine the paper. I must

apprecite that truth. I must express my gratitudes to Mr. Matsumoto of our lab. The project could

not be proceeded without his help. Finally, I thank all of my lab collegues, my friesnds and my

family for supporting my life for I could spent few years at the department.

i



ABSTRACT

Execution performance of a parallel process in general-purpose NUMA systems is greatly

affected by how resources are allocated to it through its lifetime. Concurrently running mul-

tiple parallel processes will exhaust physical memory. We propose two resource management

mechanisms. One is a scheduling policy that reflects resource consumption states. A process is

scheduled to clusters where it has physical pages. The other is a memory-replacement strategy

based on page classification under distributed shared memory system. Shared copy pages of

currently not running processes are first victimized. The performances of the two mechanisms are

evaluated by a probabilistic simulation. It allows to simulate a variety of process sets and finite

resources are manipulated with concrete management methods. The results show the superiority

of our resource management mechanisms.

論文要旨

分散メモリ環境で並列プロセスの効率的な実行を妨げることなくマルチユーザ／マルチジョブ環境

を構築するには、メモリページなどの実資源の使用状況を考慮したスケジューリングを行ない、システ

ム全体の性能をあげることが有効である。また複数の並列プロセスが並行に動作する汎用的環境では、

実メモリが溢れる場合を想定したシステム構築が求められる。分散環境では、参照頻度及び再アクセス

のコストにより実メモリページを区別すれば、効率的なメモリ置換が可能である。

本研究ではメモリアクセスベースの確率モデル上で、具体的なメモリ管理方式／アクセス頻度／ア

クセスコストを付加したシミュレーションにより、並列プロセス毎に所有する実ページ情報を利用した

スケジューリング方式、及びメモリ置換方式の評価を行う。今後は SSS–COREへのプロトタイプ・ス

ケジューラの実装を行なう予定である。



Table of Contents

List of Figures iii

List of Tables iv

1. Introduction 1

2. Related Works 2

2.1 Scheduling Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

3. Resource Management Mechanism 5

3.1 Scheduling Policy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3.1.1 Resource Management Tree : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

3.1.2 Scheduling Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.1.3 Priority Computation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.2 Memory Replacement Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

4. Simulation Methodology 8

4.1 SSS–CORE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

4.2 Model Description : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.2.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.2.2 Interconnection Network : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.2.3 Process Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.2.4 Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

4.3 Scheduling Policy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

4.4 Page Replacement Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

i



5. Simulation Results 16

5.1 Kernel Level Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5.2 Memory Replacement Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

5.3 Considerations on Realizability of General Environment : : : : : : : : : : : : : : : 23

6. Conclusion 25

References 26

ii



List of Figures

3.1 Resource Management Tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.1 Scheduling Target Area : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.2 An Example of User Level Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : 14

5.1 Results of Process Set A : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

5.2 Results of Process Set K : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

5.3 Results of Process Set L : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

5.4 Results of Process Set M : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

iii



List of Tables

5.1 Parameters and Costs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

5.2 Process Sets (a) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

5.3 Process Sets (b) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

5.4 Execution Time Breakdown : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

5.5 Replaced Times for Each Class of Pages : : : : : : : : : : : : : : : : : : : : : : : : 24

iv



Chapter 1

Introduction

NUMA[30, 7] systems are characteristic for that they may achieve very high performance by

making huge systems by simply connecting many processing elements.

There have been studies on supporting mechanisms[33, 8, 25] and optimization techniques for

parallel applications[37, 24]. These techniques optimize execution of a single parallel application.

However, in general-purpose environment, running every multiple parallel process with every

resource allocation requirement satisfied is impossible. Running a process efficiently disturbs

other process to run efficiently. Operating system level optimization is required to coordinate

processes to run each process efficiently.

We propose two resource management mechanisms that allow to concurrently and efficiently

run multiple parallel processes. One is a process scheduling policy that utilizes physical page

usage information. The other is a memory replacement strategy based on page classification.

The performances of these mechanisms are evaluated by using a detailed probabilistic simulation

model.

Previous operating systems[15, 29] that allowed gang scheduling with dynamic repartitioning

did not use resource informations and limited in scheduling flexibility. DHC[12] designed for

UMA uses management structure close to ours but only uses load informations[11]. Our idea is

to maintain the information on resource usage and operating system make decisions according to

the information.

Chapter3 describes the resource management mechanisms. The methodology and the results

of the simulation are given in Chapter4 and 5 respectively. We finally conclude in Chapter6.

1



Chapter 2

Related Works

2.1 Scheduling Systems

For efficient computing, simultaneously running frequently communicating threads is a relatively

good scheduling policy. Gang scheduling runs all threads of a parallel process simultaneously.

Many studies have showed the superiority of gang scheduling to other scheduling policies [20,

19, 16, 6].

Gang scheduling has been implemented on various systems. Cedar[17] is a multiprocessor

with Alliant FX/8 systems connected to a shared memory. Xylem operating system on Cedar[9]

uses global and local queues to implement 2-level scheduling. An Alliant FX/8 in Cedar is called a

cluster. First level scheduling allocates clusters to tasks from the global queue. Scheduling within

a cluster is done from local queues and parallel tasks that spans multiple clusters are not gang

scheduled[26].

CM-5[18] partition the machine at hardware level. Processes can be gang scheduled within a

partition. This allowed it to utilize various hardware supported mechanisms. CM-5 provided ’all

fall down’ mode to guarantee no activity on the network when multi-context-switching within a

partition to implement gang scheduling.

Medusa operating system on CM*[29], the gang-scheduler of the BBN butterfly[15], and

the gang scheduling runtime library of Makbilan operating system[14] implement the matrix

algorithm[28] of gang scheduling with dynamic repartitioning. Rows of the matrix represents the

scheduling slots and processors are time-shared by the rows. A row may contain several gangs.

All of these implementations required coordination across groups of processors to context switch

2



threads simultaneously. The “Distributed hierarchical Control” (DHC) scheme[12, 13], designed

for UMA systems, reduces this synchronization problem by partitioning with a buddy system.

Each partition is associated with a logical controller. Upper controllers first schedules larger gangs

and scheduling algorithm proceeds down to lower level controllers. Only at returning to the top

of the scheduling cycle requires coordination of all processors. The controlling structure is close

to SSS–CORE, but even a extended version of DHC[11] only uses load related informations. In

addition, its partitioning scheme limits the partition sizes to powers of two.

The Intel Paragon[7] is a distributed memory multicomputer with a 2D mesh topology. Each

processors run the OSF/1 Mach-based microkernel with UNIX server[38]. It provides a hierarchi-

cal flexible partitioning scheme. Each partition has protection modes and scheduling character-

istics associated. Gang scheduling is enabled within partitions with gang scheduling character.

Scheduling decisions are made from upper level partitions like DHC. Higher priority applications

are scheduled first at each level of the hierarchy and the scheduling algorithm continues down

to higher priority sub-partitions. However, since applications with lower priorities must wait for

higher ones to finish to be scheduled, it is hardly thought as fully time-shared system. (Unix)

processes of an application on a single node is scheduled using standard Unix timesharing system.

This feature is close to family scheduling described later.

In case of enough processors cannot be prepared, coscheduling[28] schedules only some part

of all threads, that is the ’gang’, simultaneously. However, it is not clear how much beneficial

scheduling part of a gang.

Family scheduling[5] is close to scheduling policy of SSS–CORE in the sense that scheduling is

divided into two level. It is implemented in Mach microkernel on IBM RP3[5] and uses global and

local queues to provide 2-level scheduling. Parallel processes are coordinated and mapped onto

processors at first level scheduling. However, second level scheduling that decides the scheduling

of process internal threads are also done by the operating system.

SSS–CORE lets a process to instruct the kernel to allocate variable number of processors.

Process can schedule the subset of its threads as it prefers since second level of the scheduling is

left to user-level in SSS–CORE. Process can internally preempt threads and can schedule threads

of alternative groups. Grouping of process threads can more carefully be done at user-level than

kernel-level. It is denoted as user-level scheduling in SSS–CORE.

There are other systems that implement 2-level scheduling. Mach[3, 2] uses partitioning

3



processors and a global shared queue within partitions. The operating system provides 2-level

scheduling policies by partitioning and partition internal thread queues. Hector[32] connects

clusters of processing modules by hierarchical ring network. Hurricane on Hector provides

“processor-pool” based scheduling[40, 4] Its “Hierarchical Clustering”[35] scheme enables to

schedule threads of an application close to each other with granularity of each level of operating

system structure hierarchy. However, the threads are not gang scheduled and no resource related

informations are used.

Affinity scheduling[36, 31] mostly used for UMA systems tries to schedule threads on the

same processors on which they ran previously. This is done by using resource information on the

amount of data remaining in caches. 1 However, the performance improvement was typically

small for caches are relatively small sized and running some applications flushes most of working

sets of other applications[34, 16, 36].

1Simple implementations however emulate this by boosting priorities of threads that have run on a scheduling target

processor.

4



Chapter 3

Resource Management Mechanism

3.1 Scheduling Policy

3.1.1 Resource Management Tree

To take resource consumption state into scheduling account, resource related information must

be managed. Our approach is to construct a data structure called resource management tree (RMT)

to maintain system-wide resource usage and each process’s resource consumption state.

RMT is virtually hierarchically structured to be scalable. The scalable nature enables to build

a massively parallel systems. In addition, variants of parallel systems can be supported by

adopting real structure of RMT to each specific systems, from workstation clusters to parallel super

computers with flat networks. Scheduling decisions based on the structure naturally reflects the

distances and hence the access costs between distributed resources. RMT has further advantages.

It reduces the quantity of required physical resource for storing resource information. Bottlenecks

of accessing the information is avoided.

Each node of the resource management tree logically holds information for resources seen

below the node. They are number of processors and physical pages, number of total free processors

and physical pages, and number of using processors and physical pages and ID of processes. The

root node additionally has priority, scheduling constraints and home node of each process. Figure

3.1 shows an example image for a four processor system with RMT.

A process can achieve maximum performance by freely using allocated resources and by

making the use of application level optimization. This can be done by using 2-level scheduling.

The kernel allocates resources to each process by looking into the resource management tree. This

5



processors

memories

root

level 0

level 1

level 2

Resource Management Tree

#pe : number of processors
#pg : number of pages

Memory pages of process A

Memory pages of process B

Memory pages of process C

total #pe, #pg
free #pe, #pg
process queue

ID priority
constraints

total #pe, #pg

list of process info

ID
total #pe
total #pg

total #pe, #pg
free #pe, #pg

homenode

,

Figure 3.1: Resource Management Tree

way, resources that most fit for the use of a process can be allocated. The resource allocation within

a process is left to user level scheduler. Each process freely re-allocate process internal resources.

3.1.2 Scheduling Constraints

A parallel optimizing compiler[37] generally assumes that system resources are used by a single

application. Our goal is to run object codes these compilers output in a multiple user/multiple

process environment. In such an environment, a process can achieve higher speedup when

allocated resources satisfy its requirements and preferences. Scheduling constraints are used by

processes to specify these informations to the kernel. The kernel follows the given constraints so

6



that the requirements of a process can be satisfied as much as possible.

A process can use scheduling constraints to specify its requirements of and preferences for

the number of processors to use, communication cost between processors, memory access costs,

and process migration. The fixed processors constraint expresses a constant number of processors

a process requires. The variable processors constraint enables a process to be allocated variable

number of processors. For a much parallelizable process which is programmed to be executed on

variable number of processors, it works fine and reduces processor idle time.

3.1.3 Priority Computation

Since resources are allocated to satisfy each process requirements, a mechanism must be arranged

to coordinate fair sharing of resources. Fairness can be maintained by managing priorities accord-

ing to the amount of used resources and strength of given scheduling constraints and scheduling

in priority order. Aging priorities according to these terms realizes fairness.

Priority is based on following values; (1)amount of used resources: Ur, (2)strength of schedul-

ing constraints: R
c
, (3)degree of constraints satisfaction: S

c
= 0 or 1, (4)amount of wasted

resources: Wr, (5)presence of waiting process: fw = 0 or 1 The aging value of a process is

computed from next expression.

aging = (U
r
R
c
S
c
+W

r
)f

w
� t� C

r
(1� t)

Smaller the value, higher the priority. Cr is the aging coefficient. To prevent priority values to

divert, the sum of the aging values of processes that were running before the time slice is equally

divided and distributed to waiting processes.

3.2 Memory Replacement Strategy

Under general environment where multiple processes execute simultaneously, system must be

designed to bear situations when physical memories are full. Selecting victim pages from those

that are less frequently accessed and have less re-reference cost will enhance system performance.

Pages that belong to the currently running process are usually more referenced. Generally,

local pages are more referenced than those shared by threads. Suppose a shared copy page has

been replaced, it can be obtained with small cost through network from remote cluster. However,

replacing pages that invoke disk accesses on re-reference can be a source of slow down.

7



Chapter 4

Simulation Methodology

4.1 SSS–CORE

The performance of the resource management mechanisms introduced are evaluated by simulating

system with an operating system called SSS–CORE.

SSS–CORE[22] is a general purpose massively parallel operating system for NUMA parallel

distributed systems. It provides multiple user/multiple job environment with timesharing and

space partitioning. At the same time, it tries to achieve maximum performance of each parallel

application.

For performance enhancement of the system under general purpose environment, coordi-

nation over processes and operating system level optimization is a must. SSS–CORE provides a

mechanism that allows information transfer between kernel and user level. It supports SSS–CORE

to realize the resource management mechanisms proposed in the paper.

SSS–CORE has more features. SSS–CORE implements distributed memory system on the

framework called asymmetry distributed shared memory (ADSM)[23]. Efficient protected user-

level communication is implemented[23]. Inter cluster synchronization of processors are not

required to implement gang scheduling. These features are also assumed on constructing the

simulation model.

8



4.2 Model Description

4.2.1 Overview

Operating system level simulation of parallel architecture by highly detailed model is practically

impossible[27]. A simplified simulation model must be provided. To simulate operating system

resource management mechanisms, amount of resources must have finite limitations. Memory

must not be infinite sized to simulate memory-replacement strategies, for example. In addition,

executing a particular suite of applications on the simulator is not enough for evaluating a general

purpose operating system. Even instruction level simulation does not fit for the aim. We use a

detailed probabilistic model for operating system simulation.

4.2.2 Interconnection Network

Network is not infinite resource. Network is one of resources shared by processes. Network

defines the distributedness of resources. It will affect many system characteristics. For example,

how much cost it will take to access a remote memory, what protocols will best fit to maintain

shared pages consistent, and so on. Communication activities of a process within some part of the

system may affect the activity of other process at the same part. The sharing pattern of network

affects the system performance. Network must be modeled not to mislead to unreliable results.

The simplest modeling method is expressing network by a single cost parameter. Whatever

cost it represents, it is not enough for the modeling for a few reasons. First, collisions on the

network is not modeled. Sometimes a message blocks for another message passing the same

network line or for short of message buffers. The acquired result will not include the impact of

communication pattern. Second, large scale NUMA systems with hierarchical network cannot

be simulated. Each level of those network may be constructed of different hardware cost, since

higher level network tend to contention. It will easily become bottleneck if constructed with as

little hardware cost as lower level network. Third, network sharing pattern cannot be modeled.

When communication load at some part of the system becomes high temporary, activity of process

running at the same part of the system will be affected, while processes at other part will still

be able to communicate as usual. This network sharing pattern phenomenon is important for

evaluating process scheduling performance in general environment.

The problem is in expressing network by a single cost parameter. The actually distributed

9



and separated network becomes shared by every process at every part of the system. This means

incorporating load or busy parameter and calculating network cost from these values and the cost

parameter is not enough.

We have constructed a tree structured switching network. Large scale NUMA system’s net-

work must be somehow hierarchical. RMT naturally fits to tree structured network. We do not

have to consider the mapping of the RMT and worry about the affect of mismatch between the

mapping and the underlining network structure.

A pair of a processor and a memory constructs a cluster. The nodes have buffers and do one-

hop communication. The number of output buffer entry equals to the number of input lines to the

node. There are three types of messages; page, update, and communication. Page message is for

transferring copy pages and migrating pages. Update message is for use of update protocols of the

distributed shared memory system. Remaining messages are the smallest messages and mostly

used for transferring control. Synchronization and acknowledgment are this type of messages.

The size parameter for each of these types of messages are given. The bandwidth can be given for

each level of the network. The value a message actually takes for moving one-hop is computed

from the basic transfer cost and the bandwidth of the network level where it is passing.

4.2.3 Process Model

A process has as many number of threads as the number of processors it requests. It uses the fixed

number of processors scheduling constraint , and thus its parallelism never changes through its life

time. Threads here denotes the execution context of a parallel process at a cluster. Each thread of a

process has own local memory space and a shared memory space which is shared among threads

of the process. Both memory space is provided with a reference frequency table that describes

how frequently each page of the space is accessed. The ratio of the value on a entry corresponding

to a page to the total frequency count of all the entries in a table describes the probability of an

access to the page occurs within the space expressed by the table.

Executing a particular suite of applications on the simulator is not enough for evaluating a gen-

eral purpose operating system. Exploring many types of processes suites is required. Preparing

many type of processes for instruction level simulation is not easy because writing a new program

must be involved.. Same can be said for real applications and it supports the simulation. Further-

more, we cannot describe the real characteristics of the applications executing from instruction

10



streams. We cannot describe to what particular class of process each application belongs. The

biggest problem for instruction level simulation is in how we obtain the trace. Traces from sys-

tems other than our target environment cannot be used as it is to represent the application on

our target environment. The timings of memory references and of synchronizations are different

and instruction stream may differ when the application run on our system. Since we do not have

real system implemented, we cannot obtain traces. If we have the system, we will not do the

simulation. It is the “chicken and egg” problem.

Making memory reference addresses from a distribution curve is easier to prepare many types

of processes. However, using a single distribution function is not flexible enough to express

reference locality. Not to mention, it cannot be uniform distribution to model process execution

that usually has locality in reference. Controlling the function and making particular part of the

curve higher or lower is very hard.

We use per page reference frequency table to make memory reference addresses. Access

locality can be expressed by giving higher scores at particular part of a process memory space. In

addition, this makes much clear to what characteristics an application using the frequency table

has as for memory reference. The disadvantage is that ordering of memory accesses cannot be

expressed. Re-computing the distribution of frequency at each time tick[1] requires too much

computing power. The distribution of reference rate to pages within a memory space will not

change during a simulation.

The rate of access to local space and shared space is control-ed by per process parameter. This

way, distribution of frequency rate within both spaces can be made independently. The type of

an access, read or write or other activity like register computation, can be given for each page by

the frequency table.

Process execution is clock-based probabilistic model. Processes make memory reference ac-

tions at each clock. With given interval of effective execution clocks, randomly selected threads of

a process synchronize by a simple barrier Effective execution means the time or clocks spent for

other than waiting for synchronization to complete or for memory access processing to end.

4.2.4 Memory Management

To simulate memory-replacement strategies, memory must be finite sized. Local pages and

shared pages must be distinguished. It is important for modeling execution of parallel processes

11



on NUMA systems. Concrete management schemes for each type of pages affect the execution

performance of parallel processes.

Pages of shared space are managed by distributed shared memory system. Shared write

accesses give large impact on process execution efficiencies. Managing write accesses with concrete

memory system enables to model

Sequential consistency memory model with an update protocol is used. Every write access

starts update processing by sending update messages to every copy. The processor stops until it

collects all acknowledges. To model NUMA systems, memory access cost and basic communica-

tion costs are set as to satisfy "local access � inter-cluster access� disk access". When threads

change clusters on which it executes, its local pages are moved on-demand[10, 39] through net-

work. Shared copy pages that do not reside on currently allocated clusters are removed without

any cost. Accesses to unloaded virtual pages will cause disk accesses.

4.3 Scheduling Policy

The performances of five kernel level scheduling policies are evaluated. Every policy computes

process priorities according to resource consumption state at each time slice and schedules pro-

cesses with highest priorities. Processors are looked for within a particular area and allocated to

a process if enough number of processors are found in the are. The policies are described below.

Policy0 allocates randomly selected requested number of clusters

Policy1 allocates requested number of continuous clusters in a fixed order

Policy2 first allocate clusters in home-node area where pages of target process exist, then clusters

in whole area will be tried on failure.

Policy3 same as Policy2, but only home-node area is tried

Policy4 same as Policy3, but clusters that actually has target process’s pages are allocated

The home-node of a process represents a subtree of the resource management tree that includes

its requested number of processors. It somewhat corresponds to the area where the process was

previously scheduled. Figure4.1 gives a home-node example. Process A in the figure, which has

pages at marked clusters in area4, takes a node as its home-node which represents the subtree in

area3. Area3 is called home-node area of process A.

12



Memory pages of process A

rootprocess A’s
Home Node

Area2

Area4

Area3

Figure 4.1: Scheduling Target Area

Policy2, 3, 4 use resource management tree.

The difference among these three policies is in how much they persist in allocating processors

from clusters where process’s currently using physical pages are located. The difference is in

the action taken when enough processors cannot be prepared by those clusters. Policy2 will

look for processors for all clusters. Policy3 will only try to allocate from clusters in home-node

area; the subtree below the home-node of target process. Policy4 gives up scheduling the target

process. Figure4.1 shows the area where each of policies look for processors to allocate. Area 2,

3, 4 corresponds to the area for Policy2, 3, 4 respectively. Policy4 mostly schedules a process to

the same processors time to time. Chances that processes will be scheduled to clusters where they

hold physical pages are greater in Policy4, 3, 2 order. And, more processors may be utilized in

reverse order.

Defining specific user-level scheduling policy for each process decreases simulation flexibility.

A single policy is defined and used by all processes. It will schedule the identical threads to

the processors that were also allocated to the process at previous allocation by the kernel level

scheduler. Figure4.2 shows an example of thread scheduling. In the example, processors that are

13



Clu
ste

rs

N+1N

0
1

2
3

4
5

allocated area

3
4

5
0

1
2

thread ID

Schedule Time

Figure 4.2: An Example of User Level Scheduling

allocated to the process by (N + 1)st scheduling as well as (N )th scheduling will run threads 3,

4, 5 again. Processors that are newly allocated to the process at (N + 1)st scheduling will run

remaining threads (threads 0, 1, 2) in thread ID order. When thread is scheduled to different

clusters, its local pages must be transferred through the network. Distributed shared memory

system is responsible for properly transferring the shared pages of the thread. Clearly, the more

overlaps in allocation area, the lesser the amount of page transfers.

Note that when time quantum is large enough, required time for computing scheduling itself

is relatively small. SSS–CORE will use larger value for time quantum. The time required for

scheduling is ignored in the simulation.

4.4 Page Replacement Strategies

Two page replacement strategy is evaluated and compared with each other.

Strategy0 Simple LRU without page classification

Strategy1 Uses page class. Processes are scanned in reverse priority order.

Assuming distributed shared memory system, memory pages can be classified into 6 groups by

pointing whether a page; (a) belongs to currently running process or not, (b) is shared page or

local page, and (c) has other copy pages or not. The page classes for Strategy1 are; (1) copy page

of not running process, (2) copy page of running process, (3) last one page of not running process,

14



(4) local page of not running process, (5) last one page of running process, and (6) local page of

running process. “Last-one” page in the list means a shared page without any copy thus requires

a disk access on next access. Ordering between classes 4 and 5 cannot be given trivially. Class 4

is prior to 5 in the list to maximize the efficiency of currently running process.

Since processes are scheduled in priority order, pages of lower priority process are possibly

less referenced. Strategy1 utilizes this characteristic. Both strategies will not select coherency

processing shared pages as the victim page for replacement.

15



Chapter 5

Simulation Results

The parameters used in simulation are shown in Table 5.1. System with as many as 256 processors

is evaluated. The topology of the network is three and four leveled tree structure. The former

expands at root level into 4-way, then 8-way, and 8-way at the bottom level (w488). The latter

expands 4-way at each level of the network(w4444). Table 5.2,5.3 describes the sets of parallel

processes simulated.

Each experiment is carried on until one of the processes in a set stops execution 1 or 100 time

slices has passed. The results are shown in Figure 5.1 through Figure 5.4. Graphs on the upper

rows are results of w488 system, and on the lower are of w4444 system.

Each group in a graph is the results of scheduling Policy0 through Policy4. Three left bars

of a group are the results of Strategy0 and the others are of Strategy1. Three evaluated values

are plotted; (1)net effective execution rate, (2)calibrated effective execution rate. (3)maximum

effective execution rate, and (1) is total efficiency of processors when processes are scheduled.

Idle processors to which no processes are scheduled are not included. All processor idle times

are accumulated to (3) and (2) is computed by following expression, (1) * (1.0 + idle time rate ).

Processor idle times are accumulated with the ratio of net effective execution rate.

5.1 Kernel Level Scheduling

Policy4 shows the best performance even when compared by net effective execution rate, which

is disadvantageous for Policy4 because processor idle times are not included. When compared

1This will be after 20 times time-quantum clocks of effective execution.

16



Table 5.1: Parameters and Costs

Parameters Values

Number of processors 256

Disk access cost 10000 clk

Page transfer base cost 50 clk

Pages per cluster 400 pages

Page size 4096 Byte

Total memory 409.6 Mbyte

1 quantum 100000 clk

by other evaluations, the difference becomes larger. On real systems, processor idle time can be

reduced by following two methods.

1. using variable number of processor scheduling constraint (will be introduced to SSS–CORE),

processors can be flexibly utilized for number of processors.

2. un-allocated spaces caused by scheduling oriented processor fragmentation can be utilized

by another process not included in a particular set of processes.

In case 1, the calibrated performance can generally be expected because processes will utilize

the newly allocated processor space by variable number of processor scheduling constraint as much

efficiently as they used the same space when allocated by fixed number of processors scheduling

constraint. When an additional process is assumed for a particular set of processes, it can use the

processors in formerly fragmented space as much efficiently as maximum effective execution rate,

depending on its characteristics as a parallel process. Thus maximum effective execution rate can

be expected for case 2. Evaluating cases for variant process sets other than those experimented is

inevitable and important for describing the performance of general purpose operating system and

prospecting how the performance of SSS–CORE will be. Comparison by calibrated or maximum

effective execution rate is validated from this point of view.

The results shows that be more inclined to scheduling processes to where they have their

own pages, the greater performance achieved. Considering set A, where memory replacement

17



Table 5.2: Process Sets (a)

Process Sets number of processes parallelism (number of processes)

A 12 16,36,48,50(2),64,70,96,100,128,192,200

K 12 48,96,208,256

L 11 64(5),128(2),192(2),256(2)

M 23 16(16),50(6),256(1)

Table 5.3: Process Sets (b)

Process Sets

Items A K L M

number of processes 12 12 11 23

total paralelism 1050 1184 1472 812

local space size 35500 49920 68480 35480

shared space size 10120 6360 7280 30320

physical page requirements 1.00 1.30 1.68 1.70

syncronization interval 1000–2000 1000 1000 1000

quantity is small 2, Policy4 is the best in efficiency by any of the three estimations. The quantity

of page transfer is larger among Policy2, 3, 4 in the order. Table 5.4 shows that the time spent in

synchronization or communication get larger for policies in the same order. This comes from taking

reduction of the impact of transferring local pages, which are generally referenced frequently, into

scheduling account. Changing processor allocation space time to time cause each memory to be

filled with pages from many processes. When Policy2 or Policy3 is used, processes scramble for

the physical pages and result in lower in efficiency than Policy4.

5.2 Memory Replacement Strategies

Strategy1 always outperforms Strategy0. Table 5.5 is the breakdown of replaced counts for each

class of pages. Results of the scheduling Policy4 on w488 system is shown.

As for Strategy1, mostly copy pages are replaced. Process sets A and K, which impose small

2Some memory become full because of the processes overlapping each other.

18



setA.w488

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

setA.w4444

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

Figure 5.1: Results of Process Set A (w488, w4444)

19



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 1 2 3 4

setK.w488

KLS

Efficiency
(%)

net
net calibrated

calibrated
max
max

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 1 2 3 4

setK.w4444

KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

Figure 5.2: Results of Process Set K (w488, w4444)

20



setL.w488

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

setL.w4444

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

Figure 5.3: Results of Process Set L (w488, w4444)

21



setM.w488

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

setM.w4444

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 KLS

Efficiency

net
net calibrated

calibrated
max
max

(%)

Figure 5.4: Results of Process Set M (w488, w4444)

22



Table 5.4: Execution Time Breakdown(%)(w488, Strategy1 replacement)

Process Scheduling Algorithm

Set Type Policy0 Policy1 Policy2 Policy3 Policy4

Max 57.89 57.36 60.41 64.22 84.02

A Sync 19.98 19.59 20.84 20.03 12.45

Comm 22.10 23.01 18.72 15.70 3.49

Max 42.65 56.57 59.53 59.53 74.91

K Sync 25.87 22.08 23.24 23.24 17.82

Comm 31.46 21.32 17.20 17.20 7.22

Max 38.81 48.93 54.98 54.98 65.85

L Sync 28.52 24.07 23.58 23.58 22.23

Comm 32.64 26.96 21.39 21.39 11.87

Max 24.79 35.73 47.42 61.47 64.37

M Sync 22.83 19.03 18.68 16.57 16.06

Comm 52.36 45.21 33.86 21.90 19.51
Disk assessing time is not included.

physical memory requirement, see only copy pages of not running processes victimized. But for

Strategy0, local pages and last-one shared pages are replaced.

The results show that selecting victim pages according to the classification enhances system

performance. Even when the system is somewhat highly loaded, efficiency is preserved by not

kicking local pages that are more frequently referenced out of memory.

5.3 Considerations on Realizability of General Environment

Maximum efficiencies of the results are roughly between 65% to 85% for the experiment of schedul-

ing policy Policy4 and Strategy1 replacement strategy pair. The lower results come from sequen-

tial consistency memory model. The time waiting for preceding accesses to complete is very

large. Update processing time is not very large compared to the waiting time. Cooperating more

relaxed memory model and lighter consistency managing system solves the problem. In addition,

performances of parallel applications with large shared access frequencies can be enhanced with

23



Table 5.5: Replaced times for each class of pages(Policy4, w488)

Page- Page Class

Replacement Process other’s own other’s other’s own own

Strategy Sets copy copy last local last local

A 10944 4770 723 4763 303 1130

Strategy0 K 33105 10487 830 22598 65 3803

L 92253 18063 4911 63885 136 9978

M 46394 23581 6873 11725 4054 6577

A 38976 0 0 0 0 0

Strategy1 K 77665 0 0 0 0 0

L 414287 0 0 0 0 0

M 245705 11578 0 0 0 0

various compilation techniques and by introducing useful communication techniques, such as

hierarchical multicasting and acknowledge combining. Thus, lower simulation results does not

negate general environment on parallel distributed system.

24



Chapter 6

Conclusion

The paper has described kernel level scheduling policy that uses information of resource consump-

tion state and memory replacement strategy that uses page classification upon distributed shared

memory system. The performances of various methods for these mechanisms are evaluated by

simulating on detailed probabilistic model.

As for the kernel level scheduling, the simulation results showed the superiority of those

policies that use resource management data structure and allocate processors of clusters with

memory affinity to a process. Replacing pages according to the page classification saw the

system outperforming by far against when pages are replaced in simple LRU order without the

classification. When these two mechanisms are incooperated together, the effective execution

rate of the system is higher than 65% for highly loaded cases. This value can be much raised by

using more sophisticated mechanisms, such as released consistency memory models, hierarchical

multicasting, and acknowledge combining[21].

The results of simulation given in the paper showed the possibility of practical operating

system that provides highly effective general environment on NUMA systems. A prototype

operating system SSS–CORE is currently under development on workstation clusters.

25



References

[1] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multiprocessor

Simulation Model. ACM Trans. on Computer System, Vol. 4, No. 4, pp. 273–298, November

1986.

[2] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach Operating

System. Computer, Vol. 23, No. 5, pp. 35–43, May 1990.

[3] D. L. Black. Processors, Priority and Policy: Mach Scheduling for New Environments. In

Proc. Winter USENIX Technicl Conf., pp. 1–12, January 1991.

[4] T. Brecht. On the Improtance of Parallel Applications Plcacement in NUMA Multiprocessors.

In Proc. of the 4th Symp. on Experiences with Distributed and Multiprocessor Systems, pp. 1–18,

September 1993.

[5] R. M. Bryant, H-Y. Chang, and B. S. Rosenburg. Operating systen support for parallel

programming on RP3. IBM J. Res. Dev., Vol. 35, No. 5/6, pp. 617–634, Sep/Nov, 1991.

[6] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and Page

Migration for Multiprocessor Compute Servers. In ACM, ASPLOS VI, pp. 12–24, October

1994.

[7] Intel Supercomputer Systems Division. Paragon User’s Guide, order number 312489-003 edi-

tion, June 1994.

[8] F. Douglis and J. K. Ousterhout. Process Migration in Sprite Operating System. Proc. of the

7th Inter. Conf. on Distributed Computer Systems, September 1987.

[9] P. A. Emrath, M. S. Anderson, R. R. Barton, and R. E. McGrath. The Xylem Operating System.

In Intl. Conf. Paralell Processing, Vol. I, pp. 67–70, August 1991.

26



[10] M. R. Eskicioglu. Design Issues of Process Migration Facilities in Distributed Systems. In

B. A. Shirazi, A. R. Hurson, and K. M. Kavi, editors, Scheduling and Load Balancing in Parallel

and Distributed Systems, pp. 414–424. IEEE Computer Society Press, 1995.

[11] D. G. Feitelson. Packing schemes for gang scheduling. In Proc. IPPS’96 Workshop on Job

Scheduling Strategies for Parallel Processing, pp. 54–66, April 1996.

[12] Dror G.Feitelson and Larry Rudolph. Distributed Hierarchical Control for Parallel Processing.

IEEE Computer, Vol. 23, No. 5, pp. 65–77, May 1990.

[13] Dror G.Feitelson and Larry Rudolph. Mapping and Scheduling in a Shared Environment

Using Distributed Hierarchical Control. ICPP, Vol. I, pp. I1–I8, August 1990.

[14] Dror G.Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain

synchronization. Journal of Parallel and Distributed Computing, Vol. 16(4), pp. 306–318, Decem-

ber 1992.

[15] B. C. Gorda and E. D. Brooks III. Gang Scheduling a Parallel Machine. Technical Report

UCRL-JC-107020, Lasrence Livermore NL, December 1991.

[16] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling poli-

cies and synchronization methods on the performance of parallel applications. In ACM

SIGMETRICS, Conference on Measurement & Modeling of Computer Systems, pp. 120–132, May

1991.

[17] J. Konicek and et al. The Organization of the Cedar System. In Intl. Conf. Parallel Processing,

Vol. I, pp. 49–56, August 1991.

[18] C. E. Leiserson, A. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V.

Hill, W. D. Hills, B. B. Kuszmauk, M. A. St. Pierre, D. S. Wells, M. C. Wong, S-W. Yang, and

R. Zak. The Network Architecture of the Connection Machine CM-5. In 4th ACM Symp.

Parallel Algorithms and Architecutres, pp. 272–285, June 1992.

[19] S. T. Leutenegger and X-H. Sun. The performance of multiprogrammed multiprocessor

scheduling policies. In SIGMETRICS Conf. Measurement and Modeling of Comput. Syst., pp.

226–236, May 1990.

27



[20] S-P. Lo and V. D. Gligor. A comparative analysis of multiprocessor scheduling algorithms.

In 7th Intl. Conf. Distributed Comput. Syst., pp. 356–363, September 1987.

[21] T. Matsumoto and K. Hiraki. A Shared Memory Architecture for Massively Parallel Computer

Systems. IEICE Japan SIG Reports, Vol. 92, No. 173, pp. 47–55, August 1992. (In Japanese).

[22] T. Matsumoto, S. Huruso, and K. Hiraki. General Purpose Massively Parallel Operating

System SSS–CORE. In Proceedings of 11th Japan Society for Software Science and Technology, pp.

13–16, October 1994. (in Japanese).

[23] T. Matsumoto, S. Uzuhara, and K. Hiraki. Asynmetry Distributed Memory System with

Memory Based Communication. In Proceedings of Japan Society for Software Science and Tech-

nology, pp. 37–44, November 1996. (in Japanese).

[24] Takashi Matsumoto. Synchronization mechanisms and processor scheduling on multiple

processors. IPS Japan SIG Reports, pp. 1–8, November 1989. (in Japanese).

[25] Takashi Matsumoto. Elastic barrier: Generalized barrier synchronization mechanism. Trans.

of IPS Japan, Vol. 32, No. 7, pp. 886–896, July 1991. (in Japanese).

[26] C. Natarajan, S. Sharma, and R. K. Iyer. Impact of Loop Granularity and The Self-Preemption

on the performance of loop parallel applications on a multiprogrammed shared-memory

multiprocessor. In Intl. Conf. Parallel Processing, Vol. II, pp. 174–178, August 1994.

[27] Y. Nobukuni, T. Matsumoto, and K. Hiraki. Simulation Models for Performance Estimation

of Parallel OS. IPS Japan SIG Reports, Vol. 96, No. 23, pp. 19–24, March 1996. (In Japanese).

[28] J. K. Ousterhout. Scheduling techniques for concurrent systems. 3rd Intl. Conf. Distributed

Computer Systems, pp. 22–30, October 1982.

[29] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: an experimant in distributed

operating system structure. Comm. ACM, Vol. 23, No. 2, pp. 92–105, February 1980.

[30] J. Palmar and Jr. G. L. Steele. Connection Machine model CM-5 system overview. 4th Symp.

on Frontiers Massively Parallel Comput., pp. 474–483, October 1992.

[31] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity information

in shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and Distributed

Systems, Vol. 4, No. 2, pp. 131–143, February 1993.

28



[32] M. Stumm, Z. G. Vranesic, R. White, R. Unrau, and K. Farkas. Experiences with the Hector

Multiprocessor. In Proc. Intl. Parallel Processing Symp. Parallel Systems Fair, pp. 9–16, January

1993.

[33] T.E.Anderson, et al. Scheduler activations: Effective kernel support for the user-level man-

agement of parallelism. Proc. of the 13th ACM Sympo. on Operating Systems Principles, Vol. 25,

No. 5, pp. 95–109, October 1991.

[34] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Performance of Cache-Affinity Schedul-

ing in Shared-Memory Multiprocessors. J. Parallel and Distributed Computer, Vol. 24(2), pp.

139–151, February 1995.

[35] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical Clustering: A Structure for

Scalable Multiprocessor Operating System Design. USENIX, 1992.

[36] Raj Vaswani and John Zahorjan. The implication of cache affinity on processor scheduling. In

Proceedings of 13th ACM Symposium on Operating Systems Principles, pp. 26–40, October 1991.

[37] R. P. Wilson and et al. SUIF: An Infrastructure for Research on Parallelizing and Optimizing

Compilers. ACM SIGPLAN Notices, Vol. 29, No. 12, pp. 31–37, December 1994.

[38] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso, M. Leibensperger, M. Bar-

nett, F. Rabii, and D. Netterwala. An OSF/1 UNIX for Massively Parallel Multicomputers.

In Proc. Winter USENIX Conf., pp. 449–467, January 1993.

[39] E. R. Zayas. Attacking the Proces Migratino Bottleneck. In B. A. Shirazi, A. R. Hurson,

and K. M. Kavi, editors, Scheduling and Load Balancing in Parallel and Distributed Systems, pp.

433–444. IEEE Computer Society Press, 1995.

[40] Songnian Zhou and Timothy Brecht. Processor Pool-Based Scheduling for Large-Scale NUMA

Multiprocessors. In Proc. of the ACM SIGMETRICS, Conf. on Measurement and Modeling of

Computer Systems, pp. 133–142, May 1991.

29


