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ABSTRACT

With the advance in performance of stand alone workstation and availability of network with

high throughput communication channel, it becomes feasible to perform parallel applications on

workstation clusters. However, existing network systems for workstation clusters o�er multi-user,

multi-job environment with software. Moreover, software is needed to construct communication

data. Therefore, software overheads are fairly large.

A network system that reduces those overheads is proposed in this thesis. The network interface

handles virtual environment by hardware, allowing users to communicate without software over-

heads. Moreover, by adopting communications based on framework of distributed shared memory,

the overheads in message packing/unpacking is reduced, and the routing and tra�c of message is

administrated by OS. A prototype of this network is implemented. The e�ectiveness is evaluated

using this prototype network.

論 文 要 旨

ワークステーション単体の性能向上と高速な伝送路を用いたネットワークの利用可能性により、ワー

クステーションクラスタにおける並列処理が現実となりつつある。しかし、ワークステーションクラス

タにおける既存のネットワークはソフトウェアでマルチユーザ、マルチジョブに対応している。また通

信データをソフトウェアで構築する必要がある。そのため、ソフトウェア処理のオーバーヘッドが非常

に高い。

本研究では、これらのオーバヘッドを削減するための機構を持つネットワークを提案した。仮想化

された環境を扱うためのハードウェアをネットワークインタフェイスに実装することで、ユーザはソフ

トウェアのオーバヘッドなしに通信ができる。また、 OSは共有メモリという枠組を用いた通信を採用

することで、メッセージの組み立てに関するオーバヘッドを削減し、同時にメッセージの流路と流量を

管理する。提案したネットワークのプロトタイプの実装を行ない、その性能評価により有効性の検証を

行なう。
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Chapter 1

Introduction

The performance of stand alone workstation is rapidly increasing. However, users want more

speedup in application execution time. Until now, massively parallel processing (MPP) systems

are proven to be useful for running parallel applications. Therefore users want to run parallel

applications on more commodity hardware, workstation clusters (or Network of Workstations,

NOW).

However, traditional MPP system runs one application at a time and has dedicated network

system. In contrast, NOW is a multi-user, multi-job environment and have poor network systems.

Traditional OS doesn't have the ability to schedule distributed resources e�ciently, and the increase

of network performance, especially LAN performance, has not accompanied with the increase of

stand alone workstation's performance.

We have proposed a network system which reduces latencies incurred at network interface

controller, and cooperates with OS to o�er parallel application execution environment for NOW.

By providing an MMU and routing table to the network interface controller, remote memory

access is done without software overheads and message tra�cs are reduced and controlled without

software overheads.

Remainder of this thesis is as follows. In chapter 2, the required properties for NOW network

systems for supporting massively parallel operating systems are described. In chapter 3, design

and implementation of proposed network system is described. In chapter 4, the performance of a

testbed of proposed network system is described. In chapter 5, the features as well as the problems

of existing network systems and their features as well as problems are described. In chapter 6,

conclusion and discussion are addressed.
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Chapter 2

Required facilities for NOW interconnects

The main di�erence in communication between traditional MPP systems and NOW systems is

that in NOW systems the user has no ability to use communication interface directly. In NOW,

the OS manages the communication channel which are shared among multiple user-level processes.

This results an OS interference in user-level communication, causing overheads.

The other di�erence is that the destination of a message is not determined statically on NOW

environment. This is because the actual network topology is not known until the application

is started, and processes may be scheduled on di�erent workstations from previously scheduled

workstations. The destination has to be resolved prior to sending a message, which is done by

software.

In this thesis, this two requirement is met by providing an address translation MMU and

network routing table into network interface controller. Those two facilities reduce both commu-

nication overheads and message tra�cs. Moreover, the OS controls message tra�cs by utilizing

routing table. In this section, the importance of those two facilities are described.

2.1 Reducing Communication Overheads

In order to handle virtual environment without software overheads, the network interface has

an MMU translates local process's virtual address into physical address. Therefore, when the

NI controller receives a remote memory write request, it can directly write a received data into

destination process's virtual address. When the NI controller sends a remote memory write request

or receives a remote memory read message, it can directly read data from sender's or receivers

virtual address. The routing table translates message destination into routing information of

physical network. With this two abilities, the NI controller processes a network packet without

the help of OS.

Determine packet transmission route from virtual remote node ID.

In multi-user, multi-job distributed shared memory environment, physical pages are moved

from one node to other node when the process that uses those pages is re-scheduled on di�erent
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workstation. In order for a process to access moved pages seamlessly, the address of pages, which

includes remote node ID, should be virtualized,

We call this virtualized address as Network Address. The network address consists of remote

node ID, process ID, and virtual memory address of that process. Network systems for NOW

should handle network address without OS interference.

In my network system, switching node determines the destination according to packet header.

So, network interface card has a table which translates virtual node ID into routing information. If

that ID doesn't hit the table, the card may interrupt the host and the translation can be handled

by software or OS.

Determine physical page address from given network address.

As described above, network address also has process ID and virtual memory address. The

network interface card should have an MMU, or at least TLB that translates virtual address into

physical address. If the whole address translation table is too costly to implement in network

interface, the interface may interrupt the OS and translation is done by OS or use DMA to access

the page table constructed in workstation's main memory, when the TLB in network controller is

missed.

The failure of address translation has a meaning that the actual page (related to virtual address)

has not been loaded onto physical memory. If the corresponding physical page is swapped out to

another node (which is very likely on NOW environment where network is faster then 2nd level

storage), the remote memory access message should be forwarded to that node. If the physical

page is swapped out to 2nd level storage, the network interface interrupts the OS, which then

handles the message.

2.2 Reducing and Controlling Message Tra�cs

A multicast happens, for example, a page which obeys update protocol is shared by multiple

node, and someone writes into this page. Multicast messages are reduced by controlling routing

information table, which also stores page sharing information.

2.2.1 Multicast

In NOW environment, although each link has the same bandwidth, the available bandwidth be-

tween two nodes is not necessarily the same. For a simple example, a scalable network system

often has hierarchical topology. In this case, the distance of two nodes gets farther and farther,

the number of lower level nodes increases. Thus the available bandwidth in an upper level link per

lower level nodes goes lower and lower, when an upper level link and an lower level has the same

bandwidth. Therefore it is vital to reduce the communication between two distant nodes. When a

communication is carried out by two nodes, those two nodes should be scheduled closely, because
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Switching Node

Leaf Node

Message

Ack’s are omitted.

The same number of Ack
are required as Messages.

Figure 2.1: Simple Multicast using 1 to 1 communication

doing this will also reduce communication latencies incurred at switching nodes. A multicast,

on the other hand, creates many communications between distant nodes in accordance with the

number of multicast target nodes (Figure 2.2.1).

If a network system only supports one to one communication, a multicast simply requires the

number of communications equal to the number of distant nodes1. When OS can �nd any kind of

hierarchy in multicast message, a packet from upper node can be copied at switching node and sent

to multiple lower nodes (Figure 2.2). This reduces required bandwidth of messages at intermediate

links.

Switching Node

Leaf Node

Message

Ack

Figure 2.2: Copying Multicast

A reverse case of this is that packets can be merged into one packet if those packets have the

same meaning. When a multicast message requires acknowledgment (ACK) from each nodes, those

ACK's can be merged into one packet.

1Note, however, that it is not infeasible when a link is fast enough and there are a lot of bandwidth available

(eg. any two end-nodes are connected directly each other.)
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Switching Node

Endnode Serialized point

Figure 2.3: Packet can be forwarded and copied at end-node.

ACK combining at switching node is di�cult in NOW environment, because the timing when

a switching node receives ACK are di�erent for each end-node and not all end-node will reply with

ACK. In case that a switching node does not have these copying and combining capability, the

interface card itself needs an ability to copy the packet or forward a received message to another

node (Figure 2.3).

The latter is also useful for multicast. When the interface card receives a multicast message, it

stores the message and forward it to one another receiver. This is called Chained Multicast (Figure

2.4).

Switching Node

Leaf Node

Message

Ack

Figure 2.4: Chained Multicast

If a sender of multicast message requires acknowledgments from each receivers, a receiver adds

it's own acknowledge to the end of multicast message and forward it to another receiver. The last

receiver sends all acknowledges to the multicast sender in the end.

The ability to forward a packet to another node is also crucial to NOW environment, in which a

process is sometimes re-scheduled to another node. A message may arrive a node, which is a valid

destination node when the message is sent but no longer valid because the destination process is

scheduled to di�erent node while the message travels. In this case, the message should be forwarded
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to a new valid destination node. If such messages can't be forwarded to valid destinations, moving

a process requires synchronization of messages which incurs heavy overheads at context switching

time.

The information about multicast message traverse is stored in routing table. In this way, the

page directory (routing table in disguise) is distributed among several end-nodes. Therefore the

software has complete freedom in implementing a page directory, and the header size of a multicast

message is restricted in practical size even when a page is shared among enormous number of

processors.

2.2.2 Atomic Remote Memory Access

Atomic remote memory access is an useful feature for synchronize a set of processes. When atomic

remote memory access is not available as a basic operation, it is implemented as a sequence of

properly synchronized remote memory read access and remote memory write access.

However, when workstation's I/O bus has the ability to access the data atomically, using this

ability greatly reduces the overhead of issuing several remote memory access operations and saves

network bandwidth. An intelligent NI controller which supports atomic remote memory access

operations are feasible.
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Chapter 3

Design and Implementation

3.1 Operating System

In order to fully utilize the proposed network system, a parallel operating system is needed which

has the ability to schedules message tra�cs and page replacements e�ciently.

We are developing a general purpose, massively parallel operating system, named SSS{CORE[17].

SSS{CORE uses a spin-wait which only spins when the requested resources seems to be to available

soon. The likelihood of resource availability is determined by snooping resource usages presented

by the OS. Thus the spin-wait is called Snoopy Spin wait (SS{wait). SSS{CORE and parallel

applications run on the top of it use SS{wait for all basic synchronizations. In order to implement

SS-wait e�ciently, SSS{CORE needs distributed, shared memory at user-level.

Although SSS{CORE[18] does o�er these capabilities with e�cient software mechanism, there's

no need to execute software when the proposed network system is used.

SSS{CORE's Remote Memory Access

SSS{CORE o�ers the ability to write other process's memory without overheads[18]. This is

done by providing a process with an access ID. A processes which owns other process's access ID

can access that process's memory. To get access ID of another process, a process have to provide

it's own access ID.

We have also added this ability to our network system. Remote memory access message contains

process ID and access ID of a process of which memory is accessed, as well as process ID and access

ID of a process which initiates remote memory access.

When actual access ID of accessed process di�ers from that written in request message, the

request message regarded as illegal. In this case, the network interface interrupts the OS, and the

OS will take whatever action according to SSS{CORE's policy. It is required that for user-level

process not to falsify the access ID, the access ID is written into request header by the network

interface. The OS stores this access ID to network interface controller at context switching time.
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3.2 Network Systems and Hardware Level Packets

The switching network proposed in this thesis is designed to be scalable, and has following features.

� A link has high bandwidth.

� Any network topology is allowed.

� Messages are sent and received in FIFO order, if desired.

� Reliable. No messages are dropped. Errors are detected.

To achieve �rst three features, a packet header contains routing information, and a switching

node incorporates virtual cut-through routing. As described in previous section, a switching node

might process copying multicast and/or combining of ACK packets1. Therefore packet type should

be stored at the very �rst of packet header.

In virtual cut-through, when a switching node can't forward a packet from arriving port to

destination port, the node processes the packet in store-and-forward manner. Thus, proper ow

control method is required. If ow control is performed during packet transmission, the controller

has to use both sending port and arriving port of one link, and link bandwidth is reduced by

half. (You can't send a packet and receive another packet simultaneously through one link.) Flow

control should be performed with a packet as an unit of one ow.

In order not to suspend a packet transmission, the size of one packet size must have a limitation.

When the packet is a remote memory write request, the location of whole to-be-written data

should be in range of one page. Otherwise the receiver have to watch the address against page

boundary, and if the address will cross the the page boundary, it must check the next page's

attributes. If the attribute is di�erent from previous page (e.g. has di�erent protection), the

interface controller may perform di�erent operations. This may result in rather non straightforward

reply message, part of remote memory write has succeeded, while other part has failed.

Therefore, the size of data in a packet must not exceed a page size (which is 4KB as of this

paper's implementation) and data must not cross page boundary.

3.3 Interface Node

The network interface card consists of data transceiver and interface controller. The function

diagram of network interface card is depicted in Figure3.1.

When the interface controller received a send data request from host computer, it starts DMA

to move data from main memory to transceiver. The data path between main memory and interface

1Whether a switching node copies multicast and combines ACK packets depends on how much user spends money

on switching nodes. An intelligent switching node is more expansive than an unintelligent one. Anyway the OS

knows about switching nodes and determines how packets should be handled.
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Figure 3.1: Function Diagram of Network Interface Controller

9



controller is usually not available at the time when the interface controller needs it. This is because

the path is usually an I/O bus which is shared with other I/O cards. When the controller receives

a �rst datum of a packet from transceiver, it stores the remaining, incoming data into on-board

bu�er so as not to drop the data while receiving. If the on-board bu�er becomes nearly full, the

interface controller sends a control message to stop the incoming data. When the bu�er becomes to

have su�ciently space, the controller sends a control message to incoming port to permit sending

a packet.

Then the controller processes the packet according to it's type. If the type is unknown to the

controller, it interrupts the host cpu and the packet is processed by software (OS).

The controller has an address translation unit which translates network address into physical

address of local memory. Because the network address is 64bits, complete page table may not be

constructed on network interface memory. Thus, the controller doesn't need to have page table

locally. When TLB miss has occurred, it uses DMA to fetch a table entry corresponding to given

network address from main memory, or interrupt the OS so that the OS will translate the network

address. Note that the latter case, software is not executed unless the TLB misses.

Routing information is handled similarly. The network interface translates remote node ID into

(variable sized) routing information. If the translation failed, the controller interrupt the OS, and

OS will translate remote node ID into routing information.

3.3.1 Packet type and it's handling

The basic functions of network interface is fairly simple. According to previous section, a network

interface controller needs following information to initiate remote memory access.

Information Brief explanation

Request Type Packet type. Read/Write/Atomic

Network Address of Receiver Node ID, Process ID, Virtual Address

Access ID of Receiver For checking capability.

Data Size Size of sending data (write), requested data (read)

Starting Address of Data Start address of data

Process ID of Sender Required for checking protection. OS writes this �eld.

Access ID of Sender The same as above.

3.3.1.1 Remote Memory Write

Sender

A remote memory write operation is started when the host computer issues a write operation

into network controller. The controller �rst checks the destination node ID of receiving process

and translates it into routing information. Then the controller uses DMA to copy the data from

main memory to it's bu�er, constructing a packet. After then, it sends the data to output port.

10



Receiver

When a network interface controller receives the packet, it checks the protection according to

access ID. If it succeeds, the network controller translates network address into physical memory

address, and uses DMA to transfer data. If the address translation fails, the network interface

controller interrupts the OS, and the OS handles the request. The network interface card also

interrupts the OS when the protection check has failed.

3.3.1.2 Remote Memory Read

Remote memory read is implemented as a reply of remote memory write from remote host.

Receiver

When a network controller receives a remote memory read request, it uses DMA to get the

requested data from main memory, and send the data back to requester using remote memory

write operation.

Sender

For the remote node to be able to write requester's local memory, the sender of remote memory

read request put the remote address of requesting data and local address of requesting variable

into request header.

3.3.1.3 Multicast (Packet Forwarding and Coping)

The network interface card has an ability to forward the received message to another node in order

to support chained multicast. If chained multicast is arrived at the network interface, it extracts

the next (virtual) node ID from packet header, translates it into routing information, and send the

packet to sending port. Message coping is handled as the same manner.

3.4 Switching Node

Because the routing information is stored in packets and the maximum size of a packet is limited,

a simple switching node is su�cient. Packet coping and ACK combining node is optional.

11



Chapter 4

Evaluation

4.1 Testbed

A testbed of proposed network system is described here. The current testbed consists of only

end-node network interface. No switching node is currently available.

4.1.1 Physical Link

For physical links, I used optical Fibre Channel transceiver.

Fibre Channel o�ers a high speed, serial data transmission link. It supports many physical

transmission media, such as single/multi mode optic �ber, coaxial cable, and twisted pair, and

support wide range of transmission speed from 533Mb/s to 4Gb/s. This standard is primary

aimed to replace current I/O interface, so it de�nes point-to-point connection and star connection,

and lately loop connection.

FCS (Fibre Channel standard) is an ANSI (X3T11) standard that de�nes a connectivity scheme.

FCS is divided in several layers. FC-0 de�nes a physical transmission, such as media, cabling, and

connectors. FC-1 de�nes transmission code and delimiters. FC-2 de�nes packet format and point-

to-point protocol. Serial SCSI and Gigabit Ethernet use Fibre Channel as physical level link.

The transceiver used in this testbed is clocked at 53.125MHz, and has separate send port and

receive port. Thus a link can send and receive at the same time. A port can transmit 20b data

per clock. Each port has a bandwidth of 1.06Gb/s, so a link has total bandwidth of 2.12Gb/s.

However, data are encoded when transferred using 8B10B[3] encoding (an 8bit data is encoded to

a 10bit to be transfered), so actual bandwidth of data is 800Mb/s for a port (or 1600Mb/s for a

link).

4.1.2 Network Interface Controller

An FPGA (Xilinx[4] XC4025E) is used for on-board controller, for developing and debugging with

ease.

For on-board bu�er, SRAM's (512K�8b) of which access time is 20nS (50MHz) are used. To
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prepare a 32b bus between the interface controller and SRAM, four SRAM's are required. Thus

the interface controller has a 2MB of bu�er which throughput is 200MB/s.

The network interface card is designed as an SBus card. The card doesn't support 64b access

mode of SBus. SBus is driven in 25MHz clock and can transfer 32b data in a clock. Maximum

number of burst cycle supported by Sun SparcStation10/20 is 8, and each burst access needs at

least 4 additional cycles for bus arbitration, the theoretical maximum throughput of this card is

67MB/s.

SBus also has it's own address space which is quite similar to that of Memory Channel1. So

SBus has the same disadvantage as Memory Channel, in the sense that the user has to careful about

excessive usage of SBus address space. In SunOS, SBus address space are usually only mapped

(by the device driver, which resides in OS kernel) before the SBus card initiates DMA. When the

SBus card ends the DMA, it interrupts the OS and the device driver unmap the allocated SBus

address. If the allocation of SBus address space failed, the device driver queues an SBus address

allocation request into kernel. The SBus card can not initiates DMA until the allocation succeeds,

incurring latencies in DMA startup.

Although it is possible to implement a complete translation hardware from network address into

physical address2, I used SBus's address translation feature. Using the same value for process's

virtual address and SBus address makes this possible, and the network interface controller can

use process's virtual address directly. Using a readily available feature causes some limitation,

however. The IOMMU can't handle as large address space as that of one process, the available

shared-memory address space for a process is limited. And, because separate (virtual) SBus address

space is o�ered to each process, the page tables of SBus address should be changed when a di�erent

process is scheduled3.

4.2 Performance of Physical Link

The FCS optical transceiver can transmit raw 16b data (a doublet) for every 53.125MHz, thus it

can achieve 106.25MB/s (850Mb/s) throughput. This transceiver requires roughly 10.1 seconds to

initialize itself and synchronize it's receiver port so that received bit stream are correctly recon-

structed as a doublet. Once initialized, the transceiver receive data at any time, as long as the

received data is synchronized with the receiver's receive clock. To keep up the synchronization,

the sender must send legal 20b code at every clock.

A 16b data is encoded to 20b by 8B10B method prior transmission. Because there are a lot

1To be precise, Memory Channel has a similar concept to SBus. In SBus, address translation hardware between

SBus address and physical address is called IOMMU

2SBus can be accessed directly by physical address, without using IOMMU.
3The whole page tables need not be changed by limiting available SBus address for one process and assigning

unused SBus address bits for part of process ID.
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of space unused in encoded 20b pattern, some of that unused 20b pattern are de�ned as control

code4. Therefore a control code can be transmitted at any time while data is transmitted.

The latency of data transmission consists of the latency of transceiver and the time the data

travels between the link, though the latter is negligible for links of short length (less than 10m).

The transceiver used in this thesis has a latency of 50nS to send a doublet into receiver.

As mentioned above, a data must be encoded before transmitted, as well as be decoded after

received. On this project, the encoder and decoder is assembled in (relatively slower) controller

FPGA. Due to the time and space constraint of FPGA inner building blocks, the controller can

encode doublet in 2 clocks of 53.125MHz, which limits the link bandwidth at 425Mb/s. (One clock

duration of 53.125MHz roughly equals 18.8nS, and the encoder missed the constraint at about

2nS.) The latency of encoding a doublet is the number of pipe stages it requires which is 6 clocks.

The decoding latency is 6 clocks, which happened to be same as the latency of encoding.

Therefore a link has latency of 163nS (50 + 18.8 * 6).

4.3 Overhead of Remote Memory Access

Because the interface controller directly access host workstation's I/O bus, the actual overhead is

closely related to the overhead of protocols used by the I/O bus. Similarly, remote memory access

may require page tables stored in main memory.

On this project, the interface controller is designed to hook into SBus[1] and used with Sun

SparcStation 20 (SS20). SS20 drives SBus at 25MHz clock. As stated in previous section, this

4A 20b control code is represented with 'K' pre�x (e.g. K28.5), whereas data code is represented with 'D' pre�x

(e.g. D28.5). FC-1 de�nes K28.5 D21.4 D21.5 D21.5 sequence as IDLE, which means that the link is idle and no

data or control signals are transmitted.
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project utilizes the SBus virtual address feature. So I need not implement TLB or page table access

logic on the interface. SBus DMA access from network interface to main memory, when physical

page is available and SBus address TLB is hit, is from 600nS to 800nS (+ additional burst clocks

for burst access).

Thus the testbed requires 700 + 280 + 163 + 18.8 � 2 � 16 + 700 + 280 = 2723 (nS) for

transferring 64bytes.
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Chapter 5

Related Works and Their Problems

Many researches have been done on reducing communication overheads on NOW environment.

Those studies are introduced briey, and their problems are addressed in later section.

5.1 Studies Based on Shared Memory Concept

5.1.1 Scalable Coherent Interface (SCI)

SCI[8] is an interconnect for tightly-coupled shared memory system. It's predecessor, Futurebus+,

is a bus and therefore has a limitation in data throughput and scalability. SCI o�ers point-to-point

link interfaces and handles up to 64K nodes. Although SCI systems are usually constructed as a

ring topology, any topology can be constructed using SCI switches.

A physical level SCI packet contains target ID, source ID, packet type, and CRC. Depending

on packet type, an SCI packet contains 48bit address. The interpretation of this address is up

to SCI applications. SCI also supports cache coherent memory transaction. The consistency of

cache are administrated by chained directory. A cache line in a processor has to have a pointer

to previous and next cache line that caches the same address. The memory has pointers, for each

cache line, to the �rst cache line in a processor which caches the corresponding line.

5.1.2 Memory Channel

Memory Channel (MC)[9] provides user-level, virtual-shared-memory facilities. MC de�nes it's

own physical address space independently from each processor's virtual or physical address space.

User-level application maps a page of MC's address space in mmap() manner, and the mapped

page are attributed as uncachable. When the application writes into this page, the processors

issues write request to processor bus. MC controller gets the request in turn, then constructs a

write-request message and sends it to MC network. When constructing a message, MC controller

adds a header which identi�es the destination and tailer which is a CRC.

MC is currently implemented with Digital AlphaServer 8000 as end node workstation, and all

end nodes are connected in a switch.
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5.1.3 ServerNet

ServerNet[7] is a byte-serial (9bit command/data and 1bit clock), wormhole-routed, packet switched,

point-to-point network. A transmitter de�nes the clock-rate. The end-node and switch has CRC-

based error detection hardware. The physical link is ECL, but optic �ber is planned in future.

ServerNet provides common hardware and software services for both processor and I/O nodes.

For communication between processors, ServerNet provides remote memory access without software

execution at the remote node. In order to provide protection, the remote node CPU have to set

permission bit in ServerNet network address translation table. The remote network interface card

checks this table to translate network address into physical address and see if it can operate on

this physical address. Remote memory operation provides Read Request, Read Response, Write

Request, Write Response, and Unacknowledged Write.

5.1.4 Myrinet

Myrinet[6] is also a scalable, switching network. It's network topology is primary aimed at 2-

dimensional mesh, but not limited to it. Originally, its physical transmission media is parallel wire

cable. Optic �ber is used in near future.

It supports variable sized packet from two reasons.

1. The routing information is directly written in packet header. When a switching node gets a

packet, it takes a port number from packet header and send the packet to the corresponding

port of the switch. (Thus Myrinet supports only one-to-one communication.) The length of

routing information equals to the number of switching node the packet hops.

2. The user can contain any size of data in a packet, thus can reduce some protocol over-

heads compared to the case when a very long data must be divided in small pieces and sent

separately.

What makes Myrinet unique is that the network interface card has a RISC processor (called

LANai). The user can program LANai so that it can take whatever action according to the contents

of payload. Moreover, the user can map the data bu�er of network interface to his process, and

can reduce the overhead of copying packets.

5.2 Studies based on message passing concept

5.2.1 Active Message

The basic idea of Active Message[10] is that each message has the address of user-level handler

in it's header, and the handler is called when the message arrives. The user-level handler should

only retrieves data from incoming messages. This means that the computation phase and commu-

nication phase are separated. Parallel applications are scheduled at compile time to be executed
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in pipeline manner. One stage of computation makes a data to be transferred, and the latency

of data transmission should be equal to the time needed to execute one computation stage (see

Figure 5.1).

Active Message is implemented on CM-5, and on ATM and SCI based workstation clusters[11][12].

5.2.2 Illinois Fast Message and Fast Message 2.0

Fast Message[14] is very similar to Active Message in that the message header contains the address

of user-level handler. Because Fast Message targets not only MPP but also NOW, the user-

level handler can not be called timely when the message arrives. Therefore, Fast Message needs

message bu�er, and user have to be careful about deadlock avoidance. (The whole system may

be deadlocked when a bu�er is not cleared for a long time.) Fast Message 2.0 supports streamed

messages.

Currently Fast Message is implemented on the Cray T3D, and on Myrinet, ServerNet, and

Memory Channel based workstation clusters.

5.3 Libraries

Application writers sometimes need standardized communication library for programming and

porting applications with ease. For example, MPI[16] is such a library, and provides message

send/receive interface which o�ers the following abilities.
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1. Construct a message from a user-de�ned datatype.

2. Search messages which have the user-speci�ed type from message queue.

Because libraries reside in one level higher layer then the studies described above, they are

beyond the scope of this thesis.

5.4 Problems

The problems of existing network systems and protocols are described.

5.4.1 Send Processor's Request Directly to Network

Memory Channel and SCI send the processors read/write request directly to network.

Memory Channel focuses on physically closed network (on level cross-bar switching network)

in which the number of processors are small (two to 96 processors). So that MC's address space

is de�ned as 512MB (total number of page is 64K and page size is 8KB). If larger address space

is de�ned as MC's address space, MC network can have more number of processors. In other

words, to scale up MC network, one need to replace the MC controller with one which can address

larger MC space. Moreover, because the address space of MC is limited and MC provides only

single address space, the number of pages which can be mapped into all parallel applications are

limited. The number of applications which request large MC address space is limited, which is not

a pleasant on multi-job environment.

SCI needs a directory entry for every cache line at main memory.

5.4.2 Map Network Interface Bu�er to User's Address Space to Reduce Coping

Overhead

As for Myrinet, Myrinet Control Program directly maps Myrinet interface's bu�er onto user's

address space. In this case, if host creates sending packet directly on interface's bu�er, the interface

controller needs not copy the packet from somewhere when the packet is ready to send. However,

because the amount of bu�er on the interface controller is limited, the user should be careful about

his usage of that limited bu�er. If the user has allocated some part of the interface bu�er but

forgot about freeing this, there might no space left on interface bu�er eventually. If one really has

to handle this problem1, we need some kind of virtual bu�er at other places, possibly main memory

and/or 2nd level storage. In this case, the bu�er is swapped out when the physical bu�er overows,

and swapped in when the user reads from or write to mapped bu�er address. The interface card

should better be hooked into memory bus than I/O bus when the I/O bus is slower than memory

bus (and this is usually the case with). Otherwise, the system incurs extra overhead at swap time.

1I would here someone saying... \Well, even on Unix, one reason of malloc() failure is that there are no virtual

memory left available. Why should we circumvent this problem in anyway?"
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Even if the system doesn't provide the virtual bu�er and there are no need of extra moving at

swap time, there lies at least one implicit copying of data.

If remote memory access is not implemented at interface level (say hardware level) protocol,

the software which creates interface level packets has to copy the data into the payload of sending

interface level packets and copy the data from packets into destination address.

5.4.3 Active Message and Fast Message

Active Message[10] scheme works very well on dedicated parallel systems, where the latency of

message transmission is statically analyzed, and there are no other processes running. However, it

will not work well on multi-job environment in following reasons.

1. The original implementation only requires a limited message bu�er at communication inter-

face. In this case, user-level hander must not be interrupted while receiving a message, else

it will happily drops incoming message. This leads unfairness in scheduling, when a user

process send a very large data. Moreover, the handler should be fast enough to receive the

incoming data stream. It's not really a drawback, because traditionally network speed is far

slower than processor's data copy speed.

2. If one intends to eliminate the scheduling unfairness, the data have to be stored in bu�er

on network interface, and eventually copied to main memory. Then, the user-level hander,

whose role was only to retrieve the data from communication link, no longer necessary.

3. Active Message scheme will not work on workstation environment at all. Because both the

latency of message transmission and the time required for computation cannot be analyzed

statically.

Active Messages implemented on the top of ATM[11] needs message bu�ers for each user-level

process. Those bu�ers are allocated in user-level address space, but the physical pages are pinned

down so that it won't be swapped out when the process is scheduled out. When an Active Message

arrives from network, the kernel moves the data from arriving message slot info to corresponding

process's bu�er. When the process is scheduled, the handler of Active Message is called. To avoid

message overow, the sender polls the receiver and checks if any slot is empty .

In Active Messages on SCI[12], the sender queues the message to the receiver process's message

queue, and the receiver polls it's local queue when it is scheduled. The sender refrains from sending

another message until the remote destination queue becomes empty.

Fast Message is very similar to Active Message. However, Fast Message on multi-job environ-

ment needs a message bu�er in case when the destination process is not scheduled. Therefore, the

same problems as of Active Message also applied to Fast Message.
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Chapter 6

Conclusion

In this thesis, we have designed a new network system for NOW environment. On NOW, parallel

applications run in multi-user, multi-job environment. Therefore it is vital to support those virtual

environment on hardware level.

To reduce communication overhead, the network interface has an address translation MMU

which o�ers protected user-level communication with hardware level. To reduce and control mes-

sage tra�c, the network interface has an routing table. This routing table is also used as page

directory.

In order to test the e�ciency of proposed network system, a testbed network system has created,

and performance of this testbed is evaluated.
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