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ABSTRACT
Recently, di�erence between a Massively Parallel Processor and
a network of workstations (NOW) almost disappears from hard-
ware point of view. However, current performance of NOWs is
still much lower than that of MPPs because of huge overheads of
operating systems. Furthermore, both MPPs and current NOWs
are not general-purpose because they have not succeeded in giving
users (1) a single system image with exible resource allocation,
or (2) multi-tasking environments with shared memory spaces.

SSS-CORE is a general purpose scalable operating system for
NUMA parallel distributed systems. It provides very e�cient
multi-tasking environment with timesharing and space partition-
ing. Furthermore, it tries to allow each parallel application to
achieve maximum performance by cooperation of user and ker-
nel level resource allocation and scheduling and by o�ering low-
latency high-throughput memory based communication facilities.
SSS-CORE also provides a low-overhead mechanism that allows
information transfer between kernel and user level.
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1 INTRODUCTION

For realizing a general-purpose computing environment
on a large-scale multicomputers (MPP) and a network
of workstations (NOW), performance of the system is
often compromised by introduction of a multi-tasking
system image, protection mechanisms and virtualiza-
tion of system resources. Consequently, current parallel
processing environment including NOWs and MPPs are
mainly used as a back-end computer for numerical com-
putations or as a distributed processing environment
for almost independent single tasks. It is why vari-
ous optimization technique in parallel processing and
light-weight communication mechanisms require exclu-
sive use of the system if the system is used as a parallel
computer.

We have developed a general-purpose operating sys-

tem kernel SS{CORE[1] since 1989. SS{CORE sup-
ports a multicomputer with Uniform Memory Access
(UMA) architecture, where all the memory accesses
from CPUs have approximately same latencies. Un-
fortunately, UMA architecture is not scalable and the
number of processors is limited. A multicomputer with
NUMA (Non-Uniform Memory Access) architecture is
scalable because NUMA architecture does not have lim-
itation of the number of CPUs in a system if a su�cient
network is provided. a NOW, an MPP with distributed
memory architecture and a distributed shared memory
system are examples of NUMA systems.

SSS-CORE[2] is a general purpose scalable operating
system for NUMA parallel distributed systems. The
main objectives of SSS-CORE are (1) to o�er a general-
purpose single system image to users of MPPs and
NOWs, (2) to exploit maximum performance on mul-
tiple parallel job environments from a hardware system
including network communication, and (3) to give users
a conventional UNIX-like and X-like API.

It has following features:

1. SSS{CORE supports distributed implementation
such as NOWs,

2. realizes general-purpose multi-tasking environment
by time-sharing and partitioning,

3. gives a single system image to every user,

4. makes a high-performance and fair multi-tasking
environment by a brand-new resource allocation
and scheduling mechanism using low-overheads
communications between user programs and the
kernel[2],

5. achieves high-bandwidth low-latency user-level
communications and synchronizations with protec-
tion (Memory-based communication facility)[5],

6. supports e�cient distributed shared
memory (Asymmetric Distributed Shared Memory
architecture)[5, 7], and

7. o�ers a resource information server for cooperat-
ing with optimizing compilers and application pro-
grammers.
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Figure 1: SSS-CORE basic architecture

2 Basic architecture of SSS-CORE

We show as the basic architecture of the SSS{CORE in
Figure 1. The system consists of workstations. Each
workstation is either a single processor system or an
SMP. Each node has an SSS{MC (Micro Core), which
is a simple node operating system that implements
intra-node resource managements, device drivers, basic
user interfaces and communication protocols (TCP/IP
and UDP/IP) to external systems. Within the SSS{
CORE system, both kernel programs and user programs
communicate and synchronize with each other through
the Memory-Based Communication Facilities. For pro-
grammers' or compilers' convenience of using an e�-
cient distributed shared memory system, support mech-
anisms for the Asymmetric Distributed Shared Mem-
ory are presented by the SSS{CORE. The Kernel Level
Scheduler realizes a global resource management and
fair-share schedulings with users' constraints.

3 Memory-Based Communication Facilities

3.1 Outlines of MBCF

In general-purpose parallel and distributed systems,
performance of the protected and virtualized user-
level communications/synchronizations is the most cru-
cial issue to realize e�cient parallel execution envi-
ronments. We proposed a novel high-speed user-level
communications/synchronizations scheme \Memory-
Based Communication Facilities (MBCF)" suitable
for the general-purpose system with o�-the-shelf
communication-hardware. The MBCF realizes the di-
rect remote-memory-accesses to user-task-spaces and
o�ers programmers and compilers a global shared-
memory space.

The MBCF emulate functions of the Memory-Based
Processor (MBP)[8, 9] by software routines with vari-

ous high-speed implementation techniques. Outline of
the MBCF mechanism is as follows. Remote memory
accesses are invoked by explicit system calls for MBCF
functions. First a user-program prepares an MBCF
packet in user-mode and executes the MBCF request-
ing system-call. Then in the system-call for request-
ing MBCF the kernel-level routine makes a inter-node
communication-style packet and transmit it through a
conventional network interface card(NIC). Finally the
interrupt routine for receiving MBCF packet processes
the packet and directly executes the remote access spec-
i�ed in the packet and returns a reply if necessary.

On the MBCF scheme, Protections and virtualizations
in communications and synchronizations are replaced
with those of memory accesses. This replacement makes
high-speed implementations of the mechanisms feasi-
ble without using any additional hardware mechanisms.
The MBCF only exploits the TLBs and/or the MMUs of
the node processors in order to translate logical remote
addresses.

3.2 High-speed implementation techniques

To make implementations of the MBCF as high-
performance as possible, we apply many techniques on
software engineering and exploit advanced architectural
features of latest commercial processors. We list these
techniques below.

� Direct accesses to target logical spaces

� On-memory-synchronizations

� Cache-conscious programming

� MBCF-dedicated requesting system-call

� MBCF-dedicated receiving interrupt routine

� Wide but �xed variety of MBCF functions

The above techniques do not assume any special-
mechanisms of processors and they are applicable to all
computers. The following mechanisms are useful for
high-speed implementation of the MBCF, and they are
implemented in most of latest advanced processors (e.g.
SuperSPARC, UltraSPARC).

� TLB corresponding to the coexistence of multiple
contexts

� Physical-address-tagged cache

� Light-weight context switching

� User-privileged memory-access capability in kernel
mode

� Page aliasing capability of the MMU/TLB

� Registers dedicated for system-calls or interrupts



If some architectural mechanisms described above are
absent from a processor, there are some performance
degradations but the MBCF can be implemented with
software emulations of the mechanisms.

Owing to the techniques of software engineering and ad-
vanced mechanisms of the node processors, the MBCF
scheme is more exible and less expensive than the
message-passing-style system interface for communica-
tion.

3.3 Snoopy Spin Wait algorithm

To reduce overheads of user-level synchronizations, the
Snoopy Spin wait (SS-wait)[3] algorithm is mainly used
in the SS{CORE system and the SSS{CORE system.
The SS-wait is a kind of spin wait algorithm using syn-
chronization variables. If we use simple spin waiting for
synchronizations, there are some risks to su�er starva-
tion states or large loss of CPU time. To avoid these
situations, the SS-wait exploits meta information on re-
source allocations, schedulings, and degree of progress
of threads.

In SS-wait algorithm, �rst of all an application program
checks a synchronization variable, and leaves the spin
loop successfully if the variable represents the comple-
tion of the synchronization. If the variable shows the
incompletion, the meta information is checked and pos-
sibility of large loss of CPU-time is calculated. If there
is no possibility or small possibility, the program re-
enter the start point of the SS-wait. If there is big
possibility or evidence of large CPU-time loss, the pro-
gram switches the current context (process/thread) to
one of other ready contexts through user-level sched-
uler and/or kernel-level scheduler. In the SS{CORE
system, the meta information is stored in the central
shared memory, and resource management information
is shared with kernel (in a read and write mode) and
application programs (in read-only mode). In the SSS{
CORE system, since there is no central shared memory,
another information distribution mechanism is required.
Hierarchical mechanism of collecting and distributing
information is implemented in the SSS{CORE using the
MBCF. This mechanism e�ciently multi-cast the meta
information to nodes, and user programs can check it
only with simple memory references as in SS{CORE.

SS{CORE and SSS{CORE (Scalable SS{CORE) are
named after this \SS-wait".

3.4 Performance comparison with commercial
MPP

Table 1 shows a performance comparison with user-level
communication mechanisms of MPPs. We use work-

1To guarantee packet arrival and �foness, user-level MBCF-
protocol is implemented using UDP/IP system-calls.

station cluster of Axil 320 model8.1.1 (Sun SPARCsta-
tion20 compatible, 85MHz SuperSPARC x 1) machines
with Fast Ethernet SBus Adapter 2.0 (100BASE-TX).
The Ethernet system cannot guarantee the arrival of
transmitted packets. The implementation of the MBCF
using Fast Ethernet has a considerably complicated pro-
tocol which guarantees packet-arrival and �foness of
point-to-point communications, but bu�ering mecha-
nisms can avoid performance degradations in usual un-
saturated communications. Moreover cache-conscious
programming also prevents the overhead of the compli-
cated protocol from becoming large.

Entries in Table 1 except for MBCF and UDP / SUNOS
are quoted from following papers. Figures without any
marks are from [10]. Figures on SP{1/SP{2 (with z

mark) are from [11].

The implementation of the SSAM in the table have no
mechanism to guarantee packet arrival or FIFO prop-
erty. The practical SSAM would su�er larger overheads
than the SSAM in the table.

Considering two points:

� As for the level of protections and virtualizations,
the MBCF is the highest of all, and

� As for the performance of the raw communication
hardware, the MBCF is the lowest of all,

�gures in the table 1 show that methodology and imple-
mentation techniques of the MBCF/100BASE-TX are
excellent and remarkable.

4 Kernel Level Scheduler

A parallel optimizing compiler generally assumes that
system resources are used by a single application. Our
goal is to run object codes e�ciently in a multi-user and
multi-process environment. In such an environment,
a process can achieve higher speedup when allocated
resources satisfy its requirements and preferences. In
SSS{CORE, a process can use scheduling constraints to
specify its requirements and preferences of the number
of processors to use, communication cost between pro-
cessors, memory access costs, and process migration.
For example the �xed processors constraint expresses a
constant number of processors a process requires. The
variable processors constraint enables a process to be
allocated variable number of processors.

Since resources are allocated to satisfy each process re-
quirements, a mechanism must be arranged to coordi-
nate fair sharing of resources. Fairness can be achieved
by managing priorities according to the amount of used
resources and strength of given scheduling constraints
and scheduling in priority order. Aging priorities ac-
cording to these terms realizes fairness.



Peak bandwidth Round-trip
Machine (Mbytes/s) latency(�s)

SP{1 + MPL/p 8.3 / 8.7z 56 / 75z

Paragon + NX 7.3 44
CM{5 + Active Message 10.0 12

SP{2 + MPL/udp 10.8z 554.0z

SS{20 cluster + SSAM (ATM 156Mbps) 7.5 52
SS{20 cluster + UDP1+ SUNOS4.1.4 (100BASE-TX) 5.5 800

SS{20 cluster + MBCF (100BASE-TX) 11.2 49

Table 1: Performance of MBCF

Priority is based on following values; (1)amount of used
resources: U

r
, (2)strength of scheduling constraints:

Rc, (3)degree of constraints satisfaction: Sc = 0 or 1,
(4)amount of wasted resources: Wr, (5)presence of wait-
ing process: f

w
= 0 or 1. The aging value of a process

is computed from next expression.
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Smaller the value, higher the priority. Cr is the aging co-
e�cient. To prevent priority values from diverging, the
sum of the aging values of processes that were running
before the time slice is equally divided and distributed
to waiting processes.

Under general environment where multiple processes ex-
ecute simultaneously, system must be designed to bear
situations when physical memories are exhausted. Se-
lecting victim pages from those that are less frequently
accessed and have less re-reference cost will enhance sys-
tem performance.

In SSS{CORE, a kernel level scheduler allocates re-
sources to each process by looking into the resource
management tree. This way, resources that most �t
for the use of a process can be allocated. The resource
allocation within a process is left to user level scheduler,
which freely re-allocate resources into internal threads
[2].

5 Asymmetric Distributed Shared Memory

To execute shared-memory-based parallel programs ef-
�ciently in a system without hardware-remote-cache
mechanisms, some software cache scheme must be per-
formed by the OS and/or user codes. In the MBCF
system, considering code optimizations for inter-node
communications, the full user-level cache scheme (User-
level DSM:UDSM), where the MBCF interfaces are
directly used in user-level codes to maintain software-
remote-caches, is better than OS-based software DSMs.
In other words, the UDSM scheme is more suitable
to exploit exibilities of the MBCF for the optimiza-
tions of communication and execution than OS-based
DSMs. However, in the UDSM case the user-level

execution-code must explicitly maintain, check and
modify software-controlled-cache tags. Up to now, nei-
ther processors are fast enough to neglect the overhead
of handling software cache-tags nor optimizing com-
pilers are sophisticated enough to hide and/or reduce
it. Inter-node communications occur only at shared-
write situations and in usual applications the number
of shared-writes is much less than shared-reads. Con-
sidering these characteristics we introduce a brand-new
remote cache scheme \Asymmetric Distributed Shared
Memory (ADSM)" [5].

In conventional page-based (i.e. OS-based) DSMs,
not only read-cache-misses but also shared-writes are
supported by the TLB/MMU mechanisms of node
processors using write-protection traps and page-fault
traps. Though the ADSM is one of page-based cache
schemes, only read-cache-misses are supported by the
TLB/MMU mechanisms. For each shared-write in the
ADSM scheme, a proper sequence of instructions which
maintains the cache consistency of the system is in-
serted into the user-level execution-code by the opti-
mizing compiler. In the MBCF system, the user-level
code-sequences include the MBCF-dedicated system-
calls and invalidate (or update) remote caches while
modifying the local cache-states. Since the instructions
for the consistency maintenances at shared-writes are
explicitly inserted in the application codes, there is large
room for various code optimizations. Strategy of han-
dling shared-reads (read-cache-misses) and that of han-
dling shared-writes are di�erent. Therefore we call this
scheme the \asymmetric" DSM.

The combination of the MBCF and the ADSM can
realize an e�cient distributed shared memory envi-
ronment on Network of Workstations or distributed-
memory multiprocessors without DSM-dedicated hard-
ware.

6 SSS{CORE/NOW Ver.1.1

We are currently developing SSS{CORE/NOW Ver1.1
for arbitrary number of SPARCstation 20 connected by
10BASE-T or 100BASE-TX Ethernets. In order to im-



Figure 2: A view of SSS{CORE/NOW Ver1.1

plement features of SSS{CORE e�ciently, SSS{CORE
has not been developed by modifying existing operating
systems such as UNIX and MACH, but is developed
from scratch including boot codes 2 and device drivers.

The following list shows implemented features of SSS{
CORE/NOW Ver.1.1.

� Multi-task (Time-Sharing System + Partitioning
System)

� Memory Protection, Task Protection

� Two types of system-calls: light-weight system-call
without context-switch and conventional system-
call with a possible context-switch

� Communication protocols for external systems
(UDP/IP, TCP/IP, TFTP, TELNET)

� Intra-node shared memory (page alias capability)

� Graphical console, keyboard input, mouse input

� Simple and kernel-integrated shell (batch-�le ex-
ecution, command arguments, environment vari-
ables, command-line editing, command retrieval,
debugging support)

� SunOS emulations (outsourcing of �le-related facil-
ities)

� Memory-Based Communication Facilities (MBCF)

{ Virtualization of physical nodes, protection
and security

{ Elastic memory barrier facility[12] (a kind of
relaxed memory barrier)

2SSS{CORE/NOW Ver.1.1 executes on a disc-less worksta-
tions, and it is booted via network.

{ Option of reporting a MBCF transaction re-
sult

{ WRITE, WRITE F, READ, SWAP, etc.

{ Memory-Based FIFO

{ Memory-Based Signal

{ Hierarchical multi-cast and ack-combining[8]
(update, invalidate, etc.)

{ present implementation with commodity
hardware of Ethernet and/or Fast Ethernet,
and coexistence with TCP/IP and UDP/IP

� Hierarchical mechanism of collecting and disclosing
resource information

� Page management mechanism for Asymmetric Dis-
tributed Shared Memory: ADSM

� Kernel-level resource scheduler and
manager which handles hints and constraints from
users/applications (Now under implementing)

� A optimizing (cross) compiler for MBCF + ADSM,
the compiler supports C language with PARMACS
macros

7 Conclusion

We have developed a general-purpose scalable oper-
ating system SSS{CORE, which shows that a high-
performance computing system can be constructed by
combination of workstations, o� the shelf network hard-
ware and an operating system dedicated to parallel pro-
cessing.

Figure 3: Screen of parallel ray-tracing

8 Descriptions of the demonstration

Demonstration of SSS{CORE shows following applica-
tion programs running with SSS{CORE on a cluster of
SPARCstation 20s.

� Parallel ray-tracing
Pixel calculations are assigned to multiple nodes



Figure 4: Screen of movies on ying cubes

in block-cyclic manner, then the results are trans-
ferred to a node with a display by MBCF (see Fig-
ure 3).

� Movies on ying cubes
Each node replays two movies from cinepak format
and does 3D transformations, then transfers pixel
data to a node with a display by MBCF. Outputs
from nodes are texture-mapped on two ying cubes.
See Figure 4 3 .

� Multi-screen movie
Each node replays a movie from cinepak format
and transfers pixel data to a display-node with-
out any transformations. 8 movies are simultane-
ously replayed in a display for demonstrating high-
bandwidth of MBCF.

� Numerical computation using an optimizing
compiler for SSS{CORE
A numerical application programmed with shared
memory model is compiled by our optimiz-
ing compiler[7] for ADSM of SSS{CORE. LU-
decomposition and FFT are used in the demon-
stration.
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