
MBCF: A Protected and Virtualized High-Speed

User-Level Memory-Based Communication Facility

Takashi MATSUMOTO and Kei HIRAKI

Department of Information Science, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.

e-mail: ftm, hirakig@is.s.u-tokyo.ac.jp

Abstract

We introduce a novel high-speed user-level communication
and synchronization scheme \Memory-Based Communica-
tion Facilities (MBCF)" for a general-purpose system with
an o�-the-shelf communication-hardware. This mechanism
is protected and virtualized as completely as memory so
that it can be used not only in parallel systems but also in
distributed systems. The MBCF realizes the direct remote-
memory-accesses in user-task-spaces and o�ers programmers
and compilers a wide variety of functions and a large shared-
memory space. In this paper we �rst explain outlines and
features of the MBCF, and present the high-speed imple-
mentation techniques for the MBCF. Then this paper de-
scribes varieties of the MBCF functions and introduces two
novel memory-based mechanism: the Memory-Based FIFO
and the Memory-Based Signal. Next we show that the
MBCF is more exible and less expensive than the message-
passing-style system-interfaces for communication or gener-
alized active messages. Finally we show performance evalua-
tions on the real MBCF implementation using 100BASE-TX
Ethernet.

1 Introduction

For realizing a general-purpose computing environment on a
large-scale multicomputers (MPP) and a Network of Work-
stations (NOW), performance of the system is often compro-
mised by introduction of a multi-tasking system image, pro-
tection mechanisms and virtualization of system resources.
Consequently, current parallel processing environment in-
cluding NOWs and MPPs are mainly used as a back-end
computer for numerical computations or as a distributed
processing environment for almost independent single tasks.
It is why various optimization technique in parallel process-
ing and light-weight communication mechanisms require ex-
clusive use of the system if the system is used as a parallel
computer.

For solving this problem the key technology is the
protected and virtualized high-speed user-level commu-
nication and synchronization. We proposed a novel

high-speed user-level communication and synchronization
scheme \Memory-Based Communication Facilities
(MBCF)"[1, 2] for a general-purpose system with an
o�-the-shelf communication-hardware. The MBCF is a
software-only solution for realizing protected and virtual-
ized communication and synchronization, and it is developed
for NOWs and distributed memory multiprocessors without
hardware DSM mechanisms.

Conventional user-level communication interfaces (for
examples, TCP/IP, UDP/IP and MPI) have message-
passing-type ones, and their functions are limited in remote-
write operations to speci�c message-bu�er addresses in the
kernel-space. To break out of this limitations, we adopt
memory-based operations where arbitrary target addresses
and wide variety of functions can be used. By adopting
memory-based operations protections and virtualizations in
communications and synchronizations can be replaced with
those of memory accesses. This replacement makes high-
speed implementations of the scheme feasible, since ad-
vanced architectural mechanisms of processors for memory-
accesses can be exploited.

We assume that o�-the-shelf Network Interface Cards
(NICs) are equipped in the MBCF system. These cards
have no functionalities for protection or security, transmit
memory image of a packet to other nodes and receive packets
from other nodes into a speci�ed ring bu�er in the system
(kernel) space.

2 Memory-Based Communication Facilities (MBCF)

2.1 Outline of the MBCF

The MBCF emulates Memory-Based Processor (MBP[3, 4,
5, 6])'s functions using pure software routines which include
user-level requesting codes (packet sending codes). In the
MBP system, remote memory accesses are invoked by pro-
cessors' memory operations. When a MBP detects proces-
sor's memory access whose target address belongs to a re-
mote node, the MBP translates the access information into
an inter-node communication style and makes a packet and
transmits it to the target node. When the MBP in the target
node receives the packet, it executes the remote access spec-
i�ed in the packet and returns a reply if necessary. On the
other hand, in the MBCF system remote memory accesses
are invoked by explicit system-calls for the MBCF func-
tions. First a user-program prepares an MBCF packet in
user-mode and executes the MBCF requesting system-call.
Secondly the kernel-level routine of the MBCF-dedicated
requesting system-call makes a inter-node communication-



style packet and transmits it using conventional NICs. Fi-
nally the MBCF-dedicated interrupt routine at the target
node receives the packet and directly executes the remote
access speci�ed in the packet and returns a reply if neces-
sary.

In comparison with the MBP systems, the MBCF sys-
tems su�er with some additional software overheads but an
MBCF packet is not restricted to an access corresponding
to processor's memory operation. Therefore the MBCF sys-
tems enjoy opportunities optimizing the number of commu-
nication packets and amount of communication data using
this packet exibilities. To put it concretely, large data can
be handled in an MBCF operation and multiple MBCF op-
erations can be merged into one communication packet. We
call this merged packet a \combined packet" and this opti-
mizing technique \combining". If the system has rather poor
communication hardware comparing with processor power,
these optimization opportunities are vital for e�cient exe-
cutions.

2.2 Protection and Security Mechanism

In the MBCF scheme, the MBCF-dedicated kernel-level in-
terrupt routine makes a �nal access to the target space on
the remote memory. If strong protection and security are
needed in the system, powerful capability-check or authen-
tication procedures can be added to the interrupt routine.
However this addition increase the overhead of the MBCF
interrupt routine. To prevent the overhead from increasing,
we developed another smart method exploiting page-aliases
and simple access-key.

In parallel processings, when some errors occur in an
activity, further execution of related activities is probably
meaningless. Owing to this characteristic a simple protec-
tion mechanism which separates the task from other un-
related tasks is enough for parallel processings. In order
to prevent the bad inuence of the errors from spreading
to other tasks, the MBCF uses logical address spaces with
memory management mechanism. Only the memory ar-
eas mapped to the target task can be accessed through the
MBCF. To protect the memory from attacks of other tasks,
we adopted unique access-key which represents the right to
access the target memory-space.

On the other hand, in distributed processings (e.g.
client-server model) the server activity must be protected
from errors and attacks of client activities. In this case
a strict protection mechanism which distinguish the work-
ing area of a client from the others' areas is required. We
solved this issue using unique access-key and page-aliasing.
Owing to the lack of space we describe only basic outline
of the scheme here. When the server is requested MBCF
communication from an untrusted client, in the same node
the server creates an agent (another activity which has an
independent memory-space) which deputizes for it on the
communication with the client. Then the server allocates
the working memory-area for communication with the client
and the same area is also mapped for the agent. In other
words, the area is intra-node shared-memory between the
server and the agent using page-alias mechanisms. After
these preparations on the server node, the agent informs
the client of the agent's access-key (not the server's access-
key), and the client communicate with the server using the
agent's memory-space. Even if the client intends to destroy
the server, it can only damage the agent's space and cannot
stop the execution of the server activity.

On the MBCF scheme and the MBP scheme, protec-

tion and virtualization in communications and synchroniza-
tions are replaced with those of memory accesses. This re-
placement makes high-speed implementations of the mech-
anisms feasible. Especially on the MBCF scheme, since the
TLBs and the MMUs of the node processors are exploited
for translations of remote accesses, no additional hardware
mechanisms are required.

2.3 Virtual Global Address of the MBCF System

In the MBCF scheme, communications and synchroniza-
tions are performed through virtual inter-node memory lo-
cations. An address of some location is speci�ed by the
combination of a logical-task-ID and a logical-address in
the target logical-task and we write the combination as
\(Ltask:Laddr)". The task is an abstraction of a proces-
sor's activity and has its own memory-space, and it belongs
to a node in the MBCF system. In the MBCF system,
a task is speci�ed by the combination of a physical-node-
ID and a physical-task-ID in the physical-node, we write
the combination as \(Pnode:Ptask)". In user-level appli-
cation programs, only Ltask is used to specify a task. It
is the reason why the additional virtualization enables the
MBCF system to migrate tasks among nodes. The OS for
the MBCF system maintains one translation table for each
task, and the table represents the correspondences between
Ltasks and (Pnode:Ptask)s. When some tasks are migrated
from their original nodes to other nodes, the OS updates the
tables which has entries on the migrated tasks.

Ltask notations for MBCF applications are local and vir-
tual identi�ers for individual tasks, then (Pnode,Ptask) no-
tations are used in MBCF inter-node packets. Therefore,
in the MBCF packet, the notation of a global address is
\(Pnode:Ptask:Laddr)".

3 High-Speed Implementation Techniques of the MBCF

Tomake implementations of the MBCF as high-performance
as possible, we apply many techniques on software engi-
neering and exploit advanced architectural features of latest
commercial processors. In this section we list and explain
these techniques in a lump.

� Direct accesses to target logical spaces
The most distinctive feature of the MBCF is that a
requester (sender) speci�es the logical address of the
target location to which some speci�ed operation is
applied. Since there is no intermediate queue struc-
ture, cost of queue operations can be omitted. If queue
structures are intrinsically needed for some applica-
tion, the Memory-Based FIFO which will be explained
in the next section can be e�ciently utilized in the
MBCF scheme.

� On-memory-synchronizations
It is the basic scheme of synchronizations in the MBCF
to use synchronization variables on memory of the tar-
get task. They are updated in the MBCF interrupt
routine without any other side e�ects for synchroniza-
tions. The target task can check synchronizations with
only direct accesses to the local variables. In the best
cases where MBCF operations for the synchronizations
are completed before the accesses for checking the vari-
ables, on-memory-synchronizations of the MBCF can
reduce the overheads of conventional system-calls for
inter-node synchronizations. If a blocking-type syn-
chronization is required for avoiding wasteful spin-



wait, the Memory-Based Signal or MBCF WRITE
with scheduling option can be used. They will be ex-
plained in the next section.

� Cache-conscious programming
On the latest processors, cache-miss penalties are very
large comparing with the average instruction cycles.
The programs of the MBCF-dedicated system-call and
the MBCF-dedicated interrupt routine are developed
to avoid cache-misses as much as possible.

� MBCF-dedicated requesting system-call
System-calls of the conventional OSs like UNIX have
the large overheads, because there are many copy-
operations which are added only for ease of program-
ming and unnecessary operations which are only for
portabilities or system-level maintenances (e.g. signal
check or accounting). The MBCF-dedicated system-
call does not include such wasteful operations at all.

� MBCF-dedicated receiving interrupt routine
The situation of the MBCF-dedicated interrupt rou-
tine is similar to that of the system-call. The interrupt
routine neither include unnecessary operations. It uti-
lizes only dedicated-subroutines which are optimized
for the MBCF operations and most of subroutines are
inlined.

� Wide but �xed variety of MBCF functions
In the MBCF system, user-customizations of the
MBCF functions are prohibited. This restriction en-
able the MBCF interrupt routine to operate the target
address directly within the kernel mode. Complicated
and heavy functions are realized with combinations of
the system-provided commands.

The above techniques do not assume any special-mechanisms
of processors and they are applicable to all computers.
The following mechanisms are useful for high-speed im-
plementation of the MBCF, and they are implemented in
most of latest advanced processors (e.g. SuperSPARC[7],
UltraSPARC[8]).

� TLB corresponding to coexistence of multiple
contexts
Each entry of the Translation Look-aside Bu�er (TLB)
in a recent processor has a �eld for context identi-
�er (context-ID) and the OS for the processor can
switch contexts without clearing entries of the TLB. In
the MBCF interrupt routine, each MBCF packet re-
quires a few page-entries to be used for direct memory-
accesses to the target space. With this type of TLB,
the MBCF interrupt routine replaces at most only a
few entries of the TLB. (If the MBCF operations ac-
cess the same locations frequently, it is likely that the
page entries corresponding to the locations are resident
in the TLB) The cost of the replacement itself is small
and the inuence of the MBCF operations is also very
small after the MBCF interrupt.

� Physical-address-tagged cache
Recent processors have internal caches with physical-
address-tags and the OS for the processors can switch
contexts without purging entries of the caches.

� Light-weight context switching
This item is strongly related to the preceding two
items. There are no costly operations for switch-
ing contexts or address-spaces of advanced processors.
Therefore, an access to a di�erent context (space) only
costs almost the same as much as an access within the
current space.

� User-privileged memory-access capability in
kernel mode
Some smart processors can perform user-privileged
memory-accesses in the kernel mode. If a processor
has the facility, without range-checks the the kernel
programs can access user-spaces through user-speci�ed
pointers.

� Page aliasing capability
Since the mechanisms for page aliasing among multi-
ple memory-spaces are used to realize copy-on-write
facilities or shared-memory facilities, most of proces-
sors have the page-aliasing facilities. As described be-
fore, in secure operations a MBCF-requester uses the
dummy space to which only the limited and selected
pages within the original space are allocated.

� Registers dedicated for system-calls or inter-
rupts
In some advanced processors (e.g. UltraSPARC) there
are spare registers for interrupts or exceptions. Part of
ordinary registers are superseded by the spare registers
at the beginning of the interrupt routine or the excep-
tion routine, and are restored at the end of the routine.
If we develop the routines only with the extra registers,
overheads of the context switching are dramatically re-
duced. Moreover, if there are many sets of the spare
registers corresponding to the types of events, impor-
tant pointers and parameters can be resident in the
registers.

If some architectural mechanisms described above are absent
from a processor, there are some performance degradations
but the MBCF can be implemented with software emula-
tions of the mechanisms.

4 MBCF Functions

In this section we list commands, options and supporting
commands of the MBCF. A command speci�es a main func-
tion at the target location in the target node. Some op-
tions are attached to the command and give some additional
meanings to it. Several supporting commands are imple-
mented to complement the MBCF system, and they are
used for preparations of the MBCF communication, mod-
i�cations of the task-translation table, and user operations
of the MBCF queue structures.

There is no limitation on the variety of the MBCF func-
tions though heavy commands are unsuitable to the system
from the viewpoint of fairness of task-schedulings. The op-
erations in an MBCF interrupt routine are regarded as part
of its target task. The operations of an receiving interrupt
in the conventional system are also asynchronous and dis-
turb the execution of the interrupted task. If the cost of
the MBCF receiving routine is comparable to that of the
conventional one, degrees of fairness in the MBCF system is
considered to be similar to those of the conventional system.

4.1 Variations of the Commands

There is a wide variety of the MBCF commands. We list
them in the pages that follow.

4.1.1 MBCF WRITE
MBCF WRITE is a usual remote-write operation and a ba-
sic and simple command of the MBCF. The data-size of one
command is speci�ed arbitrarily but the maximum data-size
is restricted to be under the capacity of one packet of the



network. This restriction on the data-size is valid for other
MBCF commands.

4.1.2 MBCF READ
MBCF READ is a usual remote-read command. This com-
mand is followed by a reply packet which writes the read-
data to the pre-speci�ed location in the requester node.

4.1.3 Memory-based atomic commands
The variations of the atomic commands are as follows.

� MBCF SWAP

� MBCF FETCH ADD

� MBCF COMP SWAP

When a packet with one of these commands arrives to the
target node, the MBCF interrupt-routine atomically exe-
cute speci�ed operations to local data at the target loca-
tion with the data in the packet and returns a packet with
the local data if necessary. In memory-based (MBCF and
MBP) scheme, since all atomic operations are basically ex-
ecuted in the target node without any interlocks (like bus
locks), multiple atomic operations to the same location can
be simultaneously invoked and executed in the pipeline-like
manner.

4.1.4 Page-based multicasting commands
The variations of the multicasting commands are as follows.

� MBCF UPDATE

� MBCF INVALIDATE

Each memory-page which is allocated for the multicasting
commands has a multicasting pattern. The delivery pattern
consists of inter-node links which form a tree-route. When
a multicasting command arrives at a node, the MBCF in-
terrupt routine updates or invalidate the speci�ed page and
the multicasting packets are copied and transmitted to the
outside pages which are speci�ed in the multicast pattern.
We call the multicasting technique with this delivery pattern
a \hierarchical multicasting"[3, 4].

In the case that a multicasting command is used for pro-
tocols of the DSM system, write operations in copy-pages
(i.e. pages except for tree-roots) are forwarded to the home-
page (i.e. tree-roots of multicast patterns) at �rst and then
the multicasting packets with the command are invoked
from the home-page.

In the case that the status report option or the acknowl-
edge option for memory barriers is accompanied with a mul-
ticasting command, the \acknowledge combining" technique
[3, 4] is used for collecting reports or acknowledges. Ac-
knowledges (or reports) from leaf nodes (leaf pages) are re-
turned to the immediate parent node of the multicasting
pattern but the original requesting node, and the parent
node waits for all arrivals of acknowledges from all immedi-
ate children, then the parent merges the acknowledges and
transmit a combined acknowledge to the parent of the par-
ent node. This combining technique cancels the hot-spots
of concentrating and collecting acknowledges at the original
requesting node (or home node).

4.1.5 Memory-Based FIFO (MBCF FIFO)
MBCF FIFO is a command for storing data in �fos. In the
MBCF scheme, users can create any number of �fos at any
locations, MBCF FIFO command packets do not directly
specify the location for storing data but include the target
location of the structures which de�ne the �fos. In each
�fo structure, pointers of data bu�ers and status ags are

stored and maintained. The MBCF interrupt routine reads
the pointers and the ags �rst, and stores data in the bu�er
corresponding to the speci�ed �fo structure, and updates
the structure. These operations are performed locally and
atomically. If the bu�er for the speci�ed structure is full,
the data in the MBCF FIFO packet are cancelled and the
status report option can inform the requesting task of this
cancellation of the command.

Owing to the possibilities of the cancellations, this
command cannot guarantee to keep the orders of the
MBCF FIFO commands from the same task intact. If the
�foness (i.e. the characteristic of keeping orders intact)
among �fo-data-entry commands from the same requester
is needed, users use acknowledgments using the status re-
port option or MBCF FIFOe commands in the next item.

For keeping atomicity of the operations, users are needed
to use some light-weight system-call for reading data in the
bu�ers of the memory-based �fos. This system-call is a
member of the MBCF supporting commands. If protection
is required for the �fos, memory-pages for �fo structures are
set as read-only.

4.1.6 MBCF FIFOe
MBCF FIFOe consists of two commands and these com-
mands are applied to the eager usage of memory-
based �fos with keeping the �foness among the com-
mands from a same requester. MBCF FIFOe com-
mands exploit the same structures as the MBCF FIFO
command. The di�erences between MBCF FIFOe and
MBCF FIFO are only in the method handling the bu�er
full. MBCF FIFOe NORMAL is a usual data-entry
command of the MBCF FIFOe. Once a cancellation of
the MBCF FIFOe NORMAL command occurs, the consec-
utive MBCF FIFOe NORMAL commands will also be can-
celled even though there is a room to receive data. A
MBCF FIFOe RETRY command whose target is the
stopped �fo resumes the �fo if the bu�er has a room to
receive data.

The MBCF FIFOe scheme assumes that requesters
maintain the order of sending packets and keep copies of
the packets in the node. When status-reports returned from
the target tell the requester occurrence of cancellations, the
requester resends the cancelled packets in proper order using
the copies in the node. Only one status-report in the series
of returned packets for cancelled packets carries information
that �fo-state has transited to the cancellation state. The re-
quester resend the special MBCF FIFOe RETRY command
only for the transition report.

If communication system is reliable and sender nodes
have no copies for transmitted packets, this MBCF FIFOe-
method can be implemented by copying contents of the re-
questing packets into cancellation reports. It shows that this
ow-control scheme is an extension of the \return-to-sender"
method, which is widely used[9, 10, 11], to keep orders of
point-to-point packets intact.

4.1.7 Memory-Based SIGNAL (MBCF SIGNAL)
MBCF SIGNAL command is accompanied with a remote
invocation of the user-speci�ed program in the privilege
of the target task. The invocation mechanism of the
MBCF SIGNAL is similar to that of UNIX's signals, and
invoked programs are executed only in the scheduling peri-
ods of the target task.

MBCF SIGNAL command corresponds to a memory-
based signal structure in the target task, and the struc-
ture has three types of subcommands (an invocation-type,
a parameter-store-type and an invocation-condition), an



invocation-program-counter and pointers for a data-bu�er.
These parameter in the signal structures form a wide variety
of MBCF SIGNAL functions

For protection and security, the target task set up the
structure of the MBCF SIGNAL and is able to restrict ca-
pabilities of the MBCF SIGNAL command. Since the in-
formation in the signal structures is important and critical,
memory-pages for signal structures should be set as read-
only.

The invocation-type subcommand speci�es the type of
invocation programs, i.e. one of User-Level Scheduler
(ULS), Destination-Speci�ed Program (DSP) and Source-
Speci�ed Program (SSP). ULS is the special program for
scheduling activities (threads) in the target task. At most
one ULS is enrolled to the OS per task by the target task
itself. DSP is an ordinary user-level subroutine of the tar-
get task. The entry-instruction-pointer of the DSP is in-
cluded in the signal structure. SSP is also an ordinary user-
level subroutine of the target task. The entry-pointer of
the SSP is speci�ed by the requester and included in the
MBCF SIGNAL packet.

MBCF SIGNAL commands can not only invoke pro-
grams but also deliver data like MBCF WRITE or
MBCF FIFO. The parameter-store-type subcommand con-
trols actions of storing data into bu�ers or �fos whose
pointers are also maintained in the signal structures. In
some con�gurations of the signal structures information
(Ltask, Pnode and Ptask of the requester) about received
MBCF SIGNAL packets is also stored to the bu�er or the
�fo.

The last subcommand speci�es conditions of user-
program invocations. The invocation-condition subcom-
mand controls the exclusion property of the invocation pro-
grams corresponding to a signal structure. If a preceding
invocation-program is still running at arrival of the new
MBCF SIGNAL command to the same structure, on the
command there are three options: 1. refusing to receive
the command, 2. storing data and the information to the
�fo (bu�er) but not invoking programs, 3. storing data and
invoking programs. The invocation-condition subcommand
selects one of the three options.

4.2 Variations of the Options

Three types of options can be speci�ed to each MBCF com-
mand. We list the options below.

� Replying status report This option decides whether
a status reply of the command are returned to the re-
quester or not. If it is returned, it is stored to the
location pre-speci�ed by the requester. The requester
use the stored status to know the completion of the
MBCF command or the occurrence of some failure
at the target task. To reduce tra�c of status re-
ports, users can specify REPLY ON FAILURES in
which an MBCF command replys a failure status only
when some failure occurs in the target task during the
MBCF procedure.

� Elastic memory barrier This option enable users
to perform elastic memory barrier (EMB)[12] synchro-
nizations with MBCF commands. The EMB is an
extended memory barrier synchronization. If the re-
quester specify the use of EMB and the EMB color of
the MBCF command, the request-counter of the color
is incremented, and the reply-counter of the color is
incremented after arrival of the reply packet. Users

compare these counters to know the preceding MBCF
commands in the color are all �nished.

� Task scheduling This option is for the blocking-
type synchronizations. If this option is set and the
target task is not in ready-state or active-state, the
MBCF interrupt routine wakes the task up. With re-
questers' specifying this option, the target task may
block its execution without setting any hooks for the
re-scheduling.

4.3 Supporting Commands for Initializations

We list two supporting commands of the MBCF which are
for initial remote-messages. Other supporting commands
(system-calls for the MBCF) are described in the explana-
tion of the main MBCF commands related to them.

In the usual distributed processings, a client task knows
neither the access-key of the server nor locations of the
working-area to be accessed. Therefore, the initial message
to the server cannot take the MBCF style, and some spe-
cial messaging method is needed. Conventional communi-
cation methods (e.g. TCP/IP) can be used only for the
initial communication, but a special MBCF WRITE which
is called WRITE TASKQUE is prepared in the system
owing to strengthen the securities of the MBCF. The tasks
which want to start MBCF communications should use the
WRITE TASKQUE command �rst. If some violation of
memory access is occurred in the MBCF processings after
the establishment of communication channels, the respon-
sibility of the violation rests with the task which issued
the WRITE TASKQUE (earlier if both issued). Further-
more, the task which receives WRITE TASKQUE packet
from some requester acquires the strong privilege with which
it can cancel the execution of the requester task.

Each task can create at most one special �fo-queue
whose name is \TASKQUE" in the kernel-space. When a
WRITE TASKQUE command arrives, the contents of the
packet is stored in the TASKQUE of the target task if the
task has created it. The target task can read the data from
the TASKQUE by the READ TASKQUE light-weight
systemcall. This system-call is also a supporting command
of the MBCF.

5 Qualitative Comparison with the Message-Passing-
Type Communication Mechanisms

In most conventional systems, message-passing-type inter-
faces are popular not only as user-programming-interfaces
but also as system-interfaces (in other words, kernel-user-
interfaces or system-call-interfaces). The MBCF is primar-
ily a system-interface but can be directly used as a pro-
gramming interface. By using additional user-level codes,
any message-passing-type interface can be realized in the
MBCF scheme. Conversely, all functions of the MBCF are
carried out with any message-passing-type system-interface
and some user-level additional codes. The selection of
programming-interfaces is only an issue of taste of program-
mers or language-designers. Therefore, the problem is which
type should be supported as the system-interfaces of the par-
allel and distributed systems.

In this subsection we abbreviate Message-Passing-type
System-Interfaces as \MPSI". The MPSI is less exible than
the MBCF. We explain the di�erence on the exibility-issue
in the MBCF words,



� The MPSI limits target logical addresses to only one
(or a few) implicit message-bu�er address.

� The MPSI also limits functions to only one-
type:\MBCF WRITE" (simple remote write).

� In the MPSI system the correspondences among
\send"s and \receive"s are essential. Hence the ex-
ecution order of them is inexible. In the MBCF
scheme a simple function can be encapsulated into an
atomic MBCF-command and the placement of these
commands is more elastic than \send"s and \receive"s
of the MPSI.

These di�erences on exibilities often cause the big di�er-
ence on performance. For example, because the implicit
message-bu�er of the MPSI is implemented in kernel space,
the data should be copied into another bu�er in user-space
when user want to use them. From the inexibility on the
target-address speci�cations, the number of data-copies in
the MPSI is essentially greater than the MBCF.

To be exible, the MBCF accesses directly to the user-
spaces from the interrupt routine (kernel-mode). How-
ever, recent high-end processors (like SuperSPARC[7],
UltraSPARC[8]) has the following mechanisms which can
realize user-level memory-accesses in the kernel-mode with-
out penalties.

� the processor in the kernel-mode can perform memory-
accesses with user-privilege without paying penalties.

� Many pages from various task-spaces can exist at the
same time in processor's TLB.

� Changing the current context is inexpensive and costs
only one instruction and a few clock-cycles.

Therefore, without paying any penalties the MBCF get
much more exibility than the MPSI. In other words, the
MBCF interface is much better than the MPSI.

6 Qualitative Comparison with the Active Message

The Active Message[13] (AM) is originally invented to per-
form high-speed executions of dataow-type programs di-
rectly on the bare hardware of parallel computers, and there
is no mechanism for protection, security or virtualization.
The primary feature of the AM is that a user-level receive-
routine is selected for each message and the receive-routine
for the message is speci�ed in the message itself (the entry
pointer of the receive-routine is included in the message).

The SparcStation Active Message[14] (SSAM) is an ex-
tension of the AM for workstation clusters with general-
purpose OSs. In the SSAM scheme a message (packet) is
prepared explicitly by users and transmitted through the
SSAM-dedicated system-call. This packet-sending proce-
dure of the SSAM is almost same as the MBCF but there
is no access-key for security nor virtualization for task-
migrations. The receiving procedure of the SSAM is much
di�erent from the MBCF. Because the receiving interrupt-
routine is executed in kernel-mode and operates HW reg-
isters of the NIC, the user-level receiving-routine which is
speci�ed in the SSAM message must be invoked indirectly
through some kernel-level interrupt-routine. A kernel-level
temporal receiving-routine is invoked at every interrupt of
the NIC, and the routine receives the packet to the target-
task's bu�er in the kernel-user-shared-space. After receiv-
ing the packet in the bu�er, the mechanism like the sig-
nal of the UNIX is used to invoke the speci�ed user-level

receiving-routine, and the user-level routine performs spe-
cialized functions using the data in the temporal bu�er. On
the other hand, while guaranteeing protection and virtu-
alization, the MBCF-receiving routine is directly invoked
in kernel-mode when interrupts of packet arrivals occur.
Since user-customizations of functions are prohibited in the
MBCF system, the receiving-routine can be kept safe and
fair, and upper limits of operation costs are known before
execution by kernel.

Copies to the temporal bu�ers of the SSAM are addi-
tional overheads comparing with the MBCF. Moreover, in
the SSAM system there is a possibility that the invocation
of the receiving-routine and the reply of the message are de-
layed since the routine is invoked and executed only when
the target task is scheduled in the core. In the cases of sim-
ple remote-memory-accesses, it's most likely that the cost for
invocations of user-level receiving-routines is another over-
head. On these three points the SSAM is qualitatively in-
ferior to the MBCF. On the contrary the exibility that
receiving-functions are able to be customized perfectly is
the strong point of the SSAM. In the MBCF system, how-
ever, there is no limitation of the MBCF-command varieties
and critical functions can be added in the lineup. Therefore,
the perfect customizability of receiving functions is less sig-
ni�cant than the number of data-copies is.

7 Preliminary performance evaluation

7.1 Implementation environment of the MBCF

We have developed the MBCF system using the Fast Eth-
ernet (100BASE-TX)[15] and its supporting operating sys-
tem. The Ethernet system cannot guarantee the arrival
of transmitted packets. The MBCF/100BASE-TX has a
considerably complicated protocol which guarantees packet-
arrival and �foness of point-to-point communications, but
the bu�ering mechanisms of the MBCF/100BASE-TX can
avoid performance degradations in usual unsaturated com-
munications. Moreover cache-conscious programming also
prevents the overhead of the complicated protocol to be-
come large. We use the following hardware environment.

� Node of the NOW

{ Axil 320 model 8.1.1 (Sun SPARCstation20 com-
patible, 85MHz SuperSPARC x 1)

{ Fast Ethernet SBus Adapter 2.0

� Network

{ Hub (Non-switching or Switching) connection of
100BASE-TX and/or 10BASE-T

{ Non-switching hubs are used in the measurements
unless otherwise speci�ed.

� Operating system of the NOW

{ SSS{CORE/NOW Ver.1.0[16]

� General-purpose scalable operating system
� Using time-sharing system and partitioning
system together

� Fair and e�cient scheduling scheme for mul-
tiple parallel tasks[16, 17]

� High optimizability for user-programs
� Test bed of the MBCF and the ADSM[2, 18]
� Development from scratch to attain high-
speed implementations



Table 1: Peak bandwidthes of the MBCF/100BASE-TX
data size (byte) 4 16 64 256 1024 1408

100BASE-TX (Mbyte/s) 0.29 1.06 4.03 8.28 10.86 11.24

Figure 1: NOW with the SSS-CORE/NOW Ver.1.0 where
full set of the MBCF is implemented

7.2 Peak Bandwidth of the MBCF/100BASE-TX

Table 1 shows peak bandwidthes of the MBCF/100BASE-
TX. We measure the bandwidth using the MBCF WRITE
commands with various data-size. Figures of the table
are net quantities which correspond to only payload data
without packet header of the MBCF/100BASE-TX or addi-
tional data for Ethernet protocol. The measurement method
is that a requester repeatedly sends MBCF WRITE com-
mands to a �xed target without checking any acknowledges
except for an acknowledge per 16 transmissions. The ac-
knowledgments every 16 transmissions are used to avoid sat-
uration of the Ethernet.

7.3 Latency of the MBCF/100BASE-TX

We show one-way latencies of the MBCF/100BASE-TX
in Table 2. We measured latencies in the tables us-
ing three commands: MBCF WRITE, MBCF FIFO and
MBCF SIGNAL. Originally we measured the round-trip
latencies and calculated one-way latencies from them.
MBCF FIFO latencies include cost of one light-weight
system-call for reading �fo data. MBCF SIGNAL latencies
include cost of one invocation of user-level subroutine and
one light-weight system-call for reading �fo data.

Table 2: One-way latency of the MBCF/100BASE-TX
data size (byte) 4 16 64 256 1024

command
MBCF WRITE (�s) 24.5 27.5 34 60.5 172
MBCF FIFO (�s) 32 32 40.5 73 210.5

MBCF SIGNAL (�s) 49 52.5 60.5 93 227.5

7.4 Quantitative Comparison with User-level Communi-
cation Mechanisms of the MPPs

In this subsection we compare the MBCF/100BASE-TX
with several user-level communication mechanisms of the
commercial Massively Parallel Processors (MPPs). Those
mechanisms of the MPPs have a greater or a less degree
of limitations, for examples some mechanisms force an ap-
plication to use them exclusively, others force the OS to
allocate tasks only in gang-scheduling manner. Besides
all mechanisms except for Active Message type ones are
message-passing style and there is no variety of functions
but message-sending. Therefore, in a qualitative compari-
son the MBCF/100BASE-TX is more protected, virtualized
and varied than the mechanisms of the MMPs, and superior
to them.

Table 3 shows the quantitative comparisons on peak
bandwidth and round-trip latency. All the machines in
the table except the SS20 clusters (SSAM[14] and MBCF)
have original high-speed communication hardwares which
are much faster than the 100BASE-TX system. The SSAM
system use a 156Mbps ATM NIC which is also faster than
the NIC of the MBCF/100BASE-TX.

The �gures in the table except those in the MBCF row
are quoted from following papers. Figures without any
marks are from the paper[14], and �gures on SP{1/SP{2
(with z mark) are from the paper[19].

The implementation of the SSAM in the table have no
mechanism to guarantee packet arrival or FIFO property.
The practical SSAM would su�er larger overheads than the
SSAM in the table. The SP{2 has two entries in the ta-
ble: \MPL/p" is a method such that an application exclu-
sively uses the SP{2's high-speed communication hardware,
\MPL/udp" is a method where the communication library
uses the UDP interface of the SP{2's OS. The former is not
worth calling a \virtualized" interface, and the latter should
be compared with the MBCF.

Considering two points:

� As for the level of protection and virtualization, the
MBCF is the highest of all, and

� As for the performance of the raw communication
hardware, the MBCF is the lowest of all,

�gures in the table 3 show that methodology and implemen-
tation techniques of the MBCF/100BASE-TX are excellent
and remarkable.

8 Concluding Remarks

We have proposed a user-level high-speed communication
and synchronization scheme: Memory-Based Communica-
tion Facilities (MBCF). In the MBCF scheme protection
and virtualization in communications and synchronizations
are replaced with those of memory accesses. This replace-
ment makes high-speed implementations of the scheme fea-
sible, since advanced architectural mechanisms of processors
for memory-accesses can be exploited. Moreover, memory-
based operations have large exibilities which may increase
the performance, and qualitatively the MBCF is superior



Table 3: Basic performance of user-level communication mechanisms
Machine Peak bandwidth Round-trip

+ communication software (Mbytes/s) latency(�s)

SP{1 + MPL/p 8.3 / 8.7z 56 / 75z

Paragon + NX 7.3 44
CM{5 + Active Message 10.0 12

SP{2 + MPL/udp 10.8z 554.0z

SP{2 + MPL/p 35.5z 78.0z

SS{20 cluster + SSAM (156Mbps ATM) 7.5 52
SS{20 cluster + MBCF (100BASE-TX) 11.2 49

not only to message-passing-type system-interfaces but also
to generalized active messages.

We also proposed novel two communication and syn-
chronization mechanism: the Memory-Based FIFO and the
Memory-Based Signal, The Memory-Based FIFO is more
general and virtualized than conventional �fo-queue-type
communication interfaces, and has the generalities without
paying any penalties. The Memory-Based Signal is an inter-
node and memory-based extension of UNIX signals and it
is promising primitive for making high-speed Remote Pro-
cedure Call and/or Remote Method Invocation.

We have developed the MBCF using a commodity com-
munication hardware: the Fast Ethernet (100BASE-TX).
Though the MBCF is protected and virtualized as com-
pletely as memory, it shows about the same performance
as or better than user-level communication mechanisms in-
stalled in MPP systems which have dedicated communica-
tion hardwares.

Acknowledgment

This work is partly supported by Advanced Information Tech-
nology Program (AITP) of Information-technology Promotion
Agency (IPA) Japan and by Real World Computing Partnership
(RWCP) Japan.

References

[1] T. Matsumoto and K. Hiraki: Memory-Based Com-
munication Facilities of the General-Purpose Massively
Parallel Operating System: SSS{CORE (in Japanese).
Proc. of 53rd Annual Convention of IPS Japan, Vol.1,
5B{3, pp.37{38 (September 1996).

[2] T. Matsumoto, T. Komaarashi, S. Uzuhara, and K.
Hiraki: The Asymmetric Distributed Shared Mem-
ory Using Memory-Based Communication Facilities
(in Japanese). Proc. of Computer System Symp., IPS
Japan, pp.37{44 (November 1996).

[3] T. Matsumoto and K. Hiraki: A Shared-Memory Ar-
chitecture for Massively Parallel Computer Systems (in
Japanese). IEICE Japan SIG Reports, Vol.92 No.173,
CPSY 92{26, pp.47{55 (August 1992).

[4] T. Matsumoto and K. Hiraki: Distributed Shared-
Memory Architecture Using Memory-Based Processors
(in Japanese). Proc. of Joint Symp. on Parallel Process-
ing '93, IPSJ/IEICE/JSSST, pp.245{252 (May 1993).

[5] T. Matsumoto and K. Hiraki: Dynamic Switching of
Coherent Cache Protocols and its E�ects on Doacross
Loops. outlines of the MBP in section 5, Proc. of the
1993 ACM Int. Conf. on Supercomputing, pp.328{337
(July 1993).

[6] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hiraki,
H. Amano, and H. Tanaka: Distributed Shared Mem-
ory Architecture for JUMP{1:A General-Purpose MPP

Prototype (Invited Paper). Proc. of Second Int. Symp.
on Parallel Architectures, Algorithms and Networks (I-
SPAN'96), IEEE Computer Society Press, pp.131{137
(June 1996).

[7] Texas Instruments: SuperSPARC User's Guide.
SPKU005, Texas Instruments (October 1992).

[8] Sun Microelectronics: UltraSPARC-I User's Manual.
STP1030-UG, Sun Microelectronics (January 1996).

[9] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porter�eld, and B. Smith: The Tera computer sys-
tem. Proc. 1990 Int. Conf. on Supercomputing (June
1990).

[10] Cray Research, Inc.: Cray T3D System Architecture
Overview. (March 1993).

[11] S. Pakin, M. Lauria, and A. Chien: High Perfor-
mance Messaging on Workstations: Illinois Fast Mes-
sage (FM) for Myrinet. Proc. Supercomputing'95 (De-
cember 1995).

[12] T. Matsumoto and K. Hiraki: Elastic Memory Consis-
tency Models (in Japanese). Proc. of 49th Annual Con-
vention of IPS Japan, Vol.6, 5K{3, pp.5{6 (September
1994).

[13] T. von Eicken, D. E. Culler et al.: Active Messages: A
Mechanism for Integrated Communication and Com-
putation. Proc. 19th Int. Symp. on Computer Architec-
ture, pp.256{266 (May 1992).

[14] T. von Eicken, A. Basu, and V. Buch: Low-Latency
Communication Over ATM Networks Using Active
Messages. IEEE Micro, pp.46{53 (February 1995).

[15] IEEE: IEEE Std 802.3u-1995 CSMA/CD Access
Method, Type 100BASE-T. IEEE, New York (October
1995).

[16] T. Matsumoto and K. Hiraki: Resource management
schemes of the general-purpose massively-parallel op-
erating system: SSS{CORE (in Japanese). Proc. 11th
Conf. of Japan Society for Software Science and Tech-
nology, pp.13{16 (October 1994).

[17] Y. Nobukuni, T. Matsumoto, and K. Hiraki: Resource
Management Methods for General Purpose Massively
Parallel OS SSS{CORE. Proc. of International Sympo-
sium on High Performance Computing, Springer-Verlag
LNCS 1336, pp.255{266 (November 1997).

[18] J. Niwa, T. Inagaki, T. Matsumoto, K. Hiraki: E�-
cient Implementation of Software Release Consistency
on Asymmetric Distributed Shared Memory. Proc. of
Int. Symp. on Parallel Architectures, Algorithms and
Networks (I-SPAN'97), IEEE Computer Society Press,
pp.198{201 (December 1997).

[19] M. Snir et al.: The Communication software and par-
allel environment of IBM SP2 IBM Systems Journal,
Vol. 34, No. 2, (1995).


