
Performance Evaluation of MPI/MBCF with the
NAS Parallel Benchmarks

Kenji Morimoto, Takashi Matsumoto, and Kei Hiraki

Department of Information Science, Faculty of Science, University of Tokyo
7{3{1 Hongo, Bunkyo Ward, Tokyo 113{0033, Japan

fmorimoto, tm, hirakig@is.s.u-tokyo.ac.jp

Abstract. MPI/MBCF is a high-performance MPI library targeting a
cluster of workstations connected by a commodity network. It is im-
plemented with the Memory-Based Communication Facilities (MBCF),
which provides software mechanisms for users to access remote task's
memory space with o�-the-shelf network hardware. MPI/MBCF uses
Memory-Based FIFO for message bu�ering and Remote Write for com-
munication without bu�ering from among the functions of MBCF. In
this paper, we evaluate the performance of MPI/MBCF on a cluster
of workstations with the NAS Parallel Benchmarks. We verify whether
a message passing library implemented on the shared memory model
achieves higher performance than that on the message passing model.

1 Introduction

The message passing model is a programming paradigm for a parallel process-
ing environment. The Message Passing Interface (MPI) [3] is an interface-level
instance of it. The shared memory model is another programming paradigm.
When these two models are considered as communication models, they are ex-
changeable; one can emulate the other. In regard to implementation, a shared
memory communication mechanism has advantages in performance over a mes-
sage passing communication mechanism. This is because the former can transfer
data directly to the destination memory while the latter needs intermediate
bu�ering space. With the help of memory-oriented architectural supports such
as MMU, the mechanism of shared memory communication can be implemented
with lower software overheads than that of message passing communication even
on packet-based o�-the-shelf network hardware.

From the above consideration, we hold that message passing communication
implemented with a high-performance shared memory communication mecha-
nism gives better performance than that implemented with a message passing
communication mechanism. We verify our claim by instrumentation of practical
parallel applications in this paper. We chose MPI Ver. 1.2 [3, 4] for a message
passing communication library to be implemented. We used the Memory-Based
Communication Facilities (MBCF) [7, 8] as a software-implemented shared mem-
ory communication mechanism. The round-trip time and the peak bandwidth of
our MPI library, called MPI/MBCF, show that the MBCF functions for shared

memory communication work e�ectively for the message passing library [10].
We employed the NAS Parallel Benchmarks [1, 2] as benchmark applications to
evaluate the behavior of MPI/MBCF in various communication patterns.

The rest of this paper is organized as follows. Section 2 gives the explanation
of MBCF and MPI/MBCF, followed by the basic performance parameters of
MPI/MBCF. We show the results of performance evaluation of MPI/MBCF
with the NAS Parallel Benchmarks in Sect. 3 We conclude in Sect. 4 with a
summary.

2 MPI/MBCF

2.1 Implementation of MPI/MBCF

MBCF is a software-based mechanism for accessing a remote memory space even
on packet-based o�-the-shelf network hardware such as Ethernet. We used Re-

mote Write and Memory-Based FIFO for our MPI implementation from among
the functions of MBCF. Remote Write enables a user to write data directly to
remote task's logical address space. With Memory-Based FIFO , a user can send
data to a remote FIFO-queue. The bu�ering area of the queue is reserved in the
remote user's address space.

MPI/MBCF [10] is a complete implementation of MPI-1.2. To implement
two fundamental point-to-point communication functions, send and receive, we
employed two protocols for actual communication by the library. One is the eager
protocol in terms of MPICH [5]. The other is the write protocol in our terms
[9]. These two protocols are described with the behavior of the sender and the
receiver as follows.

Eager protocol The sender sends the message header and data to the receiver
with a pre-�xed address. The receiver examines matching of the message and
pending receives to take out the data.

Write protocol The receiver sends the header to the source process. This
header contains the address of the receive bu�er. The sender examines match-
ing of the header and pending sends to send the data by a remote write
primitive.

The eager protocol enables the sender to send data as soon as the data gets
ready. The write protocol enables the receiver to receive data without bu�ering.
We combined these two protocols as follows.

{ The receiver sends the header to the source process as a request for sending

(based on the write protocol), if a matching message has not arrived yet and
if the source process is uniquely speci�ed.

{ The sender sends the message data to the receiver by a remote write primitive
(based on the write protocol) if a matching request has arrived. Or else the
sender sends the message header and data to the receiver with a pre-�xed
address (based on the eager protocol).

2.2 Basic Performance Parameters of MPI/MBCF

We measured the round-trip time and the peak bandwidth of MPI/MBCF on
a cluster of workstations connected with a 100BASE-TX Ethernet. The follow-
ing machines were used for measurement: Sun Microsystems SPARCstation 20
(85MHz SuperSPARC � 1), Sun Microsystems Fast Ethernet SBus Adapter 2.0
on each workstation, and SMC TigerStack 100 5324TX (non-switching Hub).
The operating system used for measurement is SSS{CORE Ver. 1.1a [6].

The performance of MPICH 1.1 on SunOS 4.1.4 was also evaluated with
the same equipments to make a comparison. MPICH employs TCP sockets for
communication when it is used on a cluster of workstations.

In order to examine the e�ects of the write protocol, two di�erent versions
of MPI/MBCF are used for the performance evaluation. One issues requests for
sending as explained in Sect. 2.1, and the other does not. The former implemen-
tation is denoted by SR and the latter NSR for short in the following. In NSR,
the sender always transmits a message with Memory-Based FIFO and never
with Remote Write, like the eager protocol.

From the performance parameters presented in Table 1, it is shown that
the latency of MPI/MBCF is ten times smaller than that of MPICH/TCP.
MPI/MBCF gains high bandwidth for small messages as well as for large mes-
sages. The latency of SR is smaller than that of NSR. In SR, however, request
packets from the receiver interfere with message packets from the sender. Thus
the bandwidth of SR is smaller than that of NSR.

Table 1. Basic performance parameters of MPI libraries with 100BASE-TX

MPI library MPI/MBCF MPICH/TCP
SR NSR

round-trip time for 0 byte message (�s) 71 112 968
peak bandwidth for 256 bytes message (Mbytes/s) 4.72 4.92 1.27
peak bandwidth for 16Kbytes message (Mbytes/s) 10.15 10.34 5.59

3 Performance Evaluation with the NAS Parallel
Benchmarks

3.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [1, 2] is a suite of benchmarks for parallel
machines. It consists of the following �ve kernel programs and three computa-
tional uid dynamics (CFD) applications.

EP Random number generation by the multiplication congruence method

Table 2. Characteristics of NPB Programs with 16 processes

program EP MG CG IS LU SP BT

communication freq (Mbytes/s) 0.00 20.21 36.24 22.10 5.58 19.50 14.68
communication freq (# of messages/s) 16 13653 6103 2794 5672 1657 2020
Remote Write availability rate (%) 50.51 0.02 47.89 97.15 8.66 42.55 45.22
performance ratio, MPI/MBCF vs. MPICH 1.01 1.42 1.30 1.46 1.36 1.59 1.19
performance ratio, SR vs. NSR 1.00 1.00 1.02 1.44 1.01 1.00 1.01

MG Simpli�ed multigrid kernel for solving a 3D Poisson PDE
CG Conjugate gradient method for �nding the smallest eigenvalue of a large-

scale sparse symmetric positive de�nite matrix
FT Fast-Fourier transformation for solving a 3D PDE
IS Large-scale integer sort
LU CFD application using the symmetric SOR iteration
SP CFD application using the scalar ADI iteration
BT CFD application using the 5� 5 block size ADI iteration

The NPB 2.x provides source codes written with MPI. Each of the eight
problems is classi�ed into �ve (S, W, A, B, and C) classes according to its
problem size con�guration.

3.2 Conditions

The same workstations as stated in Sect. 2.2 and 3Com Super Stack II Switch
3900 (switching Hub) were used. SR and NSR of MPI/MBCF on SSS{CORE
Ver. 1.1a and MPICH 1.1.1 on SunOS 4.1.4 are compared.

We used gcc-2.7.2.3 and g77-0.5.21 for compilation. Since the FT kernel pro-
gram cannot be compiled with g77, it is omitted in the following evaluation.

The problem size is �xed to Class W because the programs of Class A cannot
be executed on SunOS for comparison owing to the shortage of memory.

3.3 Experimental Results

Table 2 shows the characteristics of the benchmark programs. These were mea-
sured on SR with 16 processes by inserting counter codes into MPI/MBCF. The
communication frequency is computed from the total amount of data (or the
total number of messages) transmitted among all processes divided by the exe-
cution time. The Remote Write availability rate is computed from the amount
of data transmitted with Remote Write, divided by the total amount of data.
The performance ratio is the reciprocal of the execution time ratio.

Table 3 shows the execution time of EP. 226 random numbers are com-
puted. In EP, interprocess communication occurs only for gathering �nal re-
sults. The amount of transmitted data is very small. Consequently the results of
MPI/MBCF and MPICH di�er by 1% or less.

Table 3. Execution time of NPB EP in seconds

of processes 1 2 4 8 16

SR [speed-up] 120.94 [1.00] 60.50 [2.00] 30.26 [4.00] 15.14 [7.99] 7.57 [15.98]
NSR [speed-up] 120.95 [1.00] 60.51 [2.00] 30.26 [4.00] 15.14 [7.99] 7.57 [15.98]
MPICH [speed-up] 121.17 [1.00] 60.50 [2.00] 30.47 [3.98] 15.22 [7.96] 7.62 [15.90]

Table 4. Execution time of NPB MG in seconds

of processes 1 2 4 8 16

SR [speed-up] 39.30 [1.00] 23.08 [1.70] 13.52 [2.91] 7.31 [5.38] 4.80 [8.19]
NSR [speed-up] 39.26 [1.00] 23.18 [1.69] 13.48 [2.91] 7.29 [5.39] 4.80 [8.18]
MPICH [speed-up] 39.17 [1.00] 23.61 [1.66] 16.41 [2.39] 9.47 [4.14] 6.81 [5.75]

Table 4 shows the execution time of MG. The problem size is 64 � 64 � 64
and the number of iterations is 40. Point-to-point communication operations for
messages of around 1Kbytes are performed very frequently to exchange data
across partitioning boundaries. Since MPI/MBCF is suitable for �ne-grain com-
munication as shown in Sect. 2.2, the performance with MPI/MBCF is better by
42% than that with MPICH. All of the receive functions in MG specify an un-
necessary wild card MPI ANY SOURCE as a source. In SR, this disables the receiver
from issuing requests for sending to a unique source. This causes extremely low
availability (0.02%) of Remote Write. Thus the results of SR and NSR di�er
very little.

Table 5 shows the execution time of CG. The problem size is 7000 and the
number of iterations is 15. Collective reduction operations and point-to-point
communication operations are performed for messages of around 10Kbytes. Al-
though the communication frequency of CG is high (i.e. hard for MPICH), the
message size is large (i.e. easy even for MPICH). Therefore the di�erence be-
tween MPI/MBCF and MPICH in CG is smaller than in MG. Remote Write is
applied to 48% of messages in SR so that the performance of SR is improved by
1.7% from NSR.

Table 6 shows the execution time of IS. The problem size is 220 and the num-
ber of iterations is 10. About 1Mbytes messages are exchanged at each iteration
by collective all-to-all communication functions. Because the amount of compu-
tation is small, the performance of collective operations dominates the whole per-
formance more and more as the number of processes increases. In MPI/MBCF,
functions for collective operations are written so that receive functions are �rst
invoked. Thus, in SR, 97% of messages are transmitted with Remote Write . The
performance of SR is improved by 44% from NSR and by 46% from MPICH.

Table 7 shows the execution time of LU. The problem size is 33�33�33 and
the number of iterations is 300. Point-to-point communication operations are
performed for messages of some hundred bytes. Since the message size is small,

MPI/MBCF achieves better performance by 36% than MPICH. As well as in
MG, the use of MPI ANY SOURCE reduces the use of Remote Write to 8.7% for
SR.

Table 8 shows the execution time of SP. The problem size is 36 � 36 � 36
and the number of iterations is 400. Point-to-point communication operations
are performed for messages of around 10Kbytes. MPI/MBCF achieves better
performance by 59% than MPICH. There is little di�erence between results of
SR and NSR, though SR utilizes Remote Write for 43% of messages. This is
because communication in SP is organized to hide latency in some degree.

Table 9 shows the execution time of BT. The problem size is 24 � 24 � 24
and the number of iterations is 200. Point-to-point communication operations
are performed for messages of around 10Kbytes. MPI/MBCF achieves better
performance by 19% than MPICH. As well as in SP, there is little di�erence
between results of SR and NSR though SR utilizes Remote Write for 45% of
messages.

3.4 Summary of Results

Except for in EP, MPI/MBCF achieves better performance by 19%{59% than
MPICH/TCP. Especially when small messages are transmitted frequently, the
large overheads of MPICH/TCP lower the performance. Thus the di�erence in
performance between two libraries expands, as shown in MG and LU.

The NSR implementation of MPI/MBCF uses Memory-Based FIFO alone.
It has a resemblance to MPICH/TCP in that both of them are message-based
implementations of MPI. The lower latency and higher bandwidth of NSR,
which are mainly brought by MBCF, cause better performance by 2%{60%
than MPICH/TCP on the very same machines.

Compared with NSR, SR utilizes Remote Write to communicate without
bu�ering when receive functions are invoked before send functions (e.g. in CG,
IS, and LU). Therefore SR achieves better performance in such cases. This shows
that the combination of the eager protocol and the write protocol improves the
practical performance, as well as the basic performance. When a wild card is
speci�ed as a source in the receiver, however, SR cannot use Remote Write.
This deprives the opportunities of e�cient communication in SR.

4 Summary

We have implemented a full MPI-1.2 library, MPI/MBCF, with a shared mem-
ory communication mechanism, MBCF. The performance of MPI/MBCF was
evaluated on a cluster of workstations connected with a 100BASE-TX Ethernet.
By executing the NAS Parallel Benchmarks, it was shown that MPI/MBCF with
Remote Write achieves better performance than MPI/MBCF without Remote
Write and than MPICH/TCP. These results give corroborative evidence to our
claim; a message passing library achieves higher performance by using a shared

Table 5. Execution time of NPB CG in seconds

of processes 1 2 4 8 16

SR [speed-up] 69.59 [1.00] 36.20 [1.92] 21.09 [3.30] 11.03 [6.31] 7.74 [8.99]
NSR [speed-up] 69.59 [1.00] 36.84 [1.89] 21.44 [3.25] 11.38 [6.12] 7.87 [8.84]
MPICH [speed-up] 68.05 [1.00] 38.70 [1.76] 23.90 [2.85] 12.74 [5.34] 10.06 [6.76]

Table 6. Execution time of NPB IS in seconds

of processes 1 2 4 8 16

SR [speed-up] 10.12 [1.00] 7.17 [1.41] 4.49 [2.25] 3.35 [3.02] 1.97 [5.14]
NSR [speed-up] 10.08 [1.00] 7.15 [1.41] 4.82 [2.09] 3.77 [2.67] 2.83 [3.56]
MPICH [speed-up] 8.89 [1.00] 7.10 [1.25] 5.41 [1.64] 4.73 [1.88] 2.88 [3.09]

Table 7. Execution time of NPB LU in seconds

of processes 1 2 4 8 16

SR [speed-up] 1038.72 [1.00] 535.36 [1.94] 277.25 [3.75] 149.58 [6.94] 80.89 [12.84]
NSR [speed-up] 1028.93 [1.00] 538.76 [1.91] 281.93 [3.65] 151.02 [6.81] 82.08 [12.54]
MPICH [speed-up] 1020.13 [1.00] 558.06 [1.83] 297.38 [3.43] 173.66 [5.87] 110.07 [9.27]

Table 8. Execution time of NPB SP in seconds

of processes 1 4 9 16

SR [speed-up] 1400.17 [1.00] 343.50 [4.08] 155.65 [9.00] 91.89 [15.24]
NSR [speed-up] 1398.89 [1.00] 344.11 [4.07] 158.39 [8.83] 91.74 [15.25]
MPICH [speed-up] 1392.28 [1.00] 407.87 [3.41] 201.55 [6.91] 146.46 [9.51]

Table 9. Execution time of NPB BT in seconds

of processes 1 4 9 16

SR [speed-up] 618.00 [1.00] 155.54 [3.97] 71.43 [8.65] 37.66 [16.41]
NSR [speed-up] 618.71 [1.00] 155.82 [3.97] 67.78 [9.13] 37.87 [16.34]
MPICH [speed-up] 616.76 [1.00] 197.20 [3.13] 91.39 [6.75] 44.89 [13.74]

memory communication mechanism than with a message passing communication
mechanism.

The experiments were made for two di�erent combinations of operating sys-
tems and communication mechanisms on the very same machines with o�-the-
shelf hardware. These results show that it is possible to achieve large improve-
ment of performance by improving the operating system and the communication
library, without modifying applications. This also suggests the e�ectiveness of a
cluster of workstations without dedicated communication hardware.

References

1. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. The NAS parallel benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, March 1994.

2. D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow. The NAS
parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research
Center, December 1995.

3. Message Passing Interface Forum. MPI: A message-passing interface standard.
http://www.mpi-forum.org/, June 1995.

4. Message Passing Interface Forum. MPI-2: Extensions to the message-passing in-
terface. http://www.mpi-forum.org/, July 1997.

5. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message-passing interface standard. Parallel Computing,
22(6):789{828, September 1996.

6. T. Matsumoto, S. Furuso, and K. Hiraki. Resource management methods of the
general-purpose massively-parallel operating system: SSS{CORE (in Japanese). In
Proc. of 11th Conf. of JSSST, pages 13{16, October 1994.

7. T. Matsumoto and K. Hiraki. Memory-based communication facilities of the
general-purpose massively-parallel operating system: SSS{CORE (in Japanese).
In Proc. of 53rd Annual Convention of IPSJ (1), pages 37{38, September 1996.

8. T. Matsumoto and K. Hiraki. MBCF: A protected and virtualized high-speed
user-level memory-based communication facility. In Proc. of Int. Conf. on Super-
computing '98, pages 259{266, July 1998.

9. K. Morimoto. Implementing message passing communication with a shared mem-
ory communication mechanism. Master's thesis, Graduate School of University of
Tokyo, March 1999.

10. K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the memory-
based communication facilities on the SSS{CORE operating system. In V. Alexan-
drov and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 1497 of Lecture Notes in Computer Science,
pages 223{230. Springer-Verlag, September 1998.

