
Implementing MPI with the Memory-Based

Communication Facilities on the SSS{CORE

Operating System?

Kenji Morimoto, Takashi Matsumoto, and Kei Hiraki

Department of Information Science, Faculty of Science
University of Tokyo

7{3{1 Hongo, Bunkyo-ku, Tokyo 113{0033, Japan
fmorimoto, tm, hirakig@is.s.u-tokyo.ac.jp

Abstract. This paper describes an e�cient implementation of MPI on
the Memory-Based Communication Facilities; Memory-Based FIFO is
used for bu�ering by the library, and Remote Write for communica-
tion with no bu�ering. The Memory-Based Communication Facilities
are software-based communication mechanisms, with o�-the-shelf Eth-
ernet hardware. They provide low-cost and highly-functional primitives
for remote memory accesses.
The performance of the library was evaluated on a cluster of workstations
connected with a 100Base-TX network. The round-trip time was 71�s
for 0 byte message, and the peak bandwidth was 11.86Mbyte/s in full-
duplex mode. These values show that it is more e�cient to realize the
message passing libraries with the shared memory model than with the
message passing model.

1 Introduction

MPI is a widely used standard library for writing message passing programs,
especially on parallel machines with distributed memory [1]. It has been im-
plemented on various platforms such as clusters of workstations and MPPs. In
the message passing model, a communication path is established between each
pair of tasks, and communication among tasks is performed by applying send

and receive operations to those paths. This model is an abstraction of actual
communication paths. In the shared memory model, on the other hand, address
spaces of all tasks are mapped into a uni�ed address space, and load and store

operations1 to that shared space correspond to communication. This model con-
siders an address space as an object, and is called `memory-based'.

When these two models are considered as communication models, they are
exchangeable, that is, one can emulate the other. Thus the two models are equiv-
alent in expressiveness. So far, the message passing model is widely used because

? This work is partly supported by Information-technology Promotion Agency (IPA)
Japan and by Real World Computing Partnership (RWCP) Japan.

1 These operations are not necessarily �ne-grain memory accesses by a load or store
machine instruction.



that model is believed to be more e�cient, and many implementations are sup-
plied as libraries. However, when considered as a functionality provided by a
system (hardware and operating system), it has been argued that the shared
memory model is superior to the message passing model from the viewpoint of
optimization, e�ciency, and exibility [2]. This is because shared memory com-
munication directly utilizes architectural support such as MMU. For this reason,
parallel machines should provide an e�cient communication functionality based
on the shared memory model, rather than the message passing model.

The SSS{CORE is a general-purpose massively-parallel operating system
[3, 4] being developed at our laboratory. The Memory-Based Communication
Facilities (MBCF) [5, 6] are provided in the SSS{CORE as mechanisms for
accesses to remote memory. The MBCF directly support programs which are
written based on the shared memory model.

In this paper, communication functions of MPI Ver. 1.1 [1] were implemented
with the MBCF on a cluster of workstations. The rest of this paper is organized
as follows. Section 2 gives introduction of the MBCF. A detailed explanation of
the implementation of MPI is presented in Sect. 3. Section 4 shows performance
of the implemented library. We discuss related works in Sect. 5, and conclude in
Sect.6.

2 MBCF: Memory-Based Communication Facilities

2.1 Features of MBCF

The MBCF is a software-based mechanism for accessing remote memory. Details
of the MBCF are as follows.

1. Direct access to remote memory

The MBCF communicates by reading from and writing to remote memory
directly, not by sending messages to some �xed bu�er for communication.
At the same time, by using architectural memory management mechanisms
such as MMU, protection of memory and abstraction of accesses are achieved
at clock-level speed.

2. Use of o�-the-shelf network hardware
The MBCF is a software-based mechanism, and does not need such dedicated
communication hardware as many of MPPs have. In order to achieve high
performance, however, it is preferable that the following mechanisms are
provided.
{ Switching of address spaces with low overhead
{ TLB which allows many contexts to be mixed
{ Page alias capability
{ High-speed processor cache with physical address tags

All of these mechanisms are available on most of the latest microprocessors.
3. Channel-less communication

Unlike channel-oriented communication such as user memory mapping with
the Myrinet [7], the MBCF achieves abstraction and protection dynamically
by system calls for communication.



4. Highly-functional operations for remote memory
Since a receiver of an MBCF packet handles it with software, such compound
operations as swap, FIFO write, and fetch and add are available as well as
read and write.

5. Guarantee for arrival and order of packets

Because a system takes care of lost or out-of-order packets, users can make
communication as if they were on a reliable network.

2.2 Performance of MBCF

The performance of the MBCF was evaluated on a cluster of workstations con-
nected with a 100Base-TX network. The following machines were used for mea-
surement; Axil 320 model 8.1.1 (Sun SPARCstation 20 compatible, 85 MHz
SuperSPARC � 1), Sun Microsystems Fast Ethernet SBus Adapter 2.0 on each
workstation, SMC TigerStack 100 5324TX (non-switching HUB), and Bay Net-
works BayStack 350T (switching HUB with full-duplex mode). The one-way
latency and the peak bandwidth between two nodes were measured.

The one-way latency is the time from the invocation of a system call for
remote write to the arrival of the data at the destination task (including the
overhead of reading the data). Table 1 shows the one-way latency of Remote
Write (MBCF WRITE) and Memory-Based FIFO (MBCF FIFO) for various
data-sizes on a HUB.

Table 1. One-way latency of MBCF's remote accesses with 100Base-TX

data-size (byte) 4 16 64 256 1024

MBCF WRITE (�s) 24.5 27.5 34 60.5 172

MBCF FIFO (�s) 32 32 40.5 73 210.5

The peak bandwidth is measured by invoking remote accesses continuously.
Table 2 shows peak bandwidth of Remote Write and Memory-Based FIFO for
various data-sizes on a HUB (half-duplex) and on a switching HUB (full-duplex).

Both of the results show that the performance of the MBCF is very close to
that of the network itself. The MBCF is superior in e�ciency to the commu-
nication functions of MPPs, which have dedicated communication hardware of
higher-potential [6].

3 Implementation of Communication Functions

In this section, the details of the implementation of two point-to-point com-
munication functions, MPI Isend() and MPI Irecv(), are described. All other
communication functions can be explained on the analogy of these two functions.



Table 2. Peak bandwidth of MBCF's remote accesses with 100Base-TX

data-size (byte) 4 16 64 256 1024 1408

MBCF WRITE, half-duplex (Mbyte/s) 0.31 1.15 4.31 8.56 11.13 11.48

MBCF FIFO, half-duplex (Mbyte/s) 0.31 1.14 4.30 8.53 11.13 11.45

MBCF WRITE, full-duplex (Mbyte/s) 0.34 1.27 4.82 9.63 11.64 11.93

MBCF FIFO, full-duplex (Mbyte/s) 0.34 1.26 4.80 9.62 11.64 11.93

The behavior of these two functions varies according to the order of matching
two invocations of send and receive functions. In the followings, two cases are
described separately; the case where the invocation of MPI Isend() precedes
that of MPI Irecv() and the reversed case2.

3.1 The Case Where MPI Isend() Precedes MPI Irecv()

When MPI Isend() gets started before the invocation of the corresponding
MPI Irecv(), the sender does not know which bu�er the receiver speci�es for in-
coming data. Therefore the sender should transmit a message to some �xed bu�er
in the receiver's address space3. The MBCF's Memory-Based FIFO (MB FIFO)
is used for this �xed bu�er.

MB FIFO is one of variations of Remote Write (stated in Sect. 3.2). The
bu�er for a FIFO-queue is taken from the receiving-user's address space, which
is speci�ed by the user in advance. The user can make as many queues as space
permits. The sender transmits an MB FIFO packet, designating the objective
queue by the destination address. The trap handler (managed by the system) on
the receiver's side tries to enqueue that packet, and noti�es the sender whether
the trial succeeded or not, if it is required by the sender to return the state.

In this implementation, the number of MB FIFO's queues for messages cor-
responds to the number of processes in the group of MPI COMM WORLD. When the
sender's rank in MPI COMM WORLD is i, the sender transmits a message to the re-
ceiver's i-th queue. The receiver searches the i-th queue for a message from the
sender of rank i (in MPI COMM WORLD). By preparing many queues, it becomes
easier to examine message matching and to manage the order of messages.

The sequence of communication is shown in Fig. 1. The left side is the sender's
execution ow, and the right is the receiver's. At �rst the sender enqueues a
message to the receiver's MB FIFO queue (because no matching special message
has come from the receiver; see Sect. 3.2), and then the receiver dequeues that
message when it becomes necessary.

2 When MPI Isend() and MPI Irecv() are invoked at the same time, it follows the
former case. This is detected by assigning sequential numbers to messages.

3 The sender can choose to transmit a special short message to the receiver (without
transmitting the actual message), which tells the receiver to take the message away
with remote read by itself. This protocol is suitable only for long messages.



?

Sender

?

Receiver

MPI Isend() -hhhhhhhhhh-

message
(by MB FIFO)

((((((((((�� acknowledgment
(by the MBCF system)

(refered by MPI Wait())
?

enqueue

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

MB FIFO's
queues

(for messages)

MPI Irecv()�
6B
B
BBN

dequeue

Fig. 1. Communication sequence where MPI Isend() precedes MPI Irecv()

The message may be divided into pieces before transmission owing to the
constraint of communication hardware. In order to reduce acknowledgments,
noti�cations of successful enqueueing are not issued, except for the noti�cation
for the last packet in a message.

3.2 The Case Where MPI Irecv() Precedes MPI Isend()

When MPI Irecv() is invoked before MPI Isend(), the receiver is able to tell
the address of the receiving bu�er to the sender, so that the sender can transmit
a message directly to that bu�er by Remote Write. To notify the invocation of
MPI Irecv(), another set of MB FIFO queues is used in addition to one used
for bu�ered messages in Sect. 3.1.

The sender of Remote Write transmits an MBCF packet with an argument of
the destination address represented in receiver's virtual address space. The trap
handler on the receiver's side tries to write that packet to the speci�ed address,
and returns the resulting state if necessary.

Figure 2 shows the communication sequence. At �rst the receiver enqueues
a special message to the sender's MB FIFO queue which requests the sender to
transmit a message directly (because no matching message has come from the
sender). MPI Isend() on the sender checks queues of requests for sending, and
responds to a matching request. For this Remote Write, acknowledging messages
are not needed because it is guaranteed that the Remote Write succeeds.

4 Performance

This section shows the performance of the MPI library implemented on the
SSS{CORE with the MBCF. The performance was evaluated on a cluster of
workstations connected with a 100Base-TX network. The same equipments were
used as in Sect. 2.2.

For comparison, the performance of the MPICH Ver. 1.1 [8] on the SunOS
4.1.4 was also evaluated with the same system con�guration. The MPICH is an



?

Sender

?

Receiver

MPI Irecv()�((((((((((�

request for sending
(by MB FIFO)

?

enqueue

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

MB FIFO's
queues

(for requests)

6
dequeue

MPI Isend() -hhhhhhhhhh- -

message
(by Remote Write)

written to bu�er

Fig. 2. Communication sequence where MPI Irecv() precedes MPI Isend()

implementation of MPI being developed at the Argonne National Laboratory
and the Mississippi State University. The MPICH on a cluster of workstations
uses TCP sockets for communication, which are based on the message passing
model. For the SunOS 4.1.4, the network switch can not be used in full-duplex
mode owing to the constraint of the device driver.

Let our implementation be called \MPI/MBCF," and the MPICH be called
\MPICH/TCP." In order to see the e�ect of using Remote Write, there are
two di�erent versions for MPI/MBCF implementation. One issues \requests for
sending (SendReqs)" as stated above, and another does not. The latter treats
MPI Isend() and MPI Irecv() as if MPI Isend() always preceded MPI Irecv().
As a consequence, there are �ve cases, as shown below.

NSRH MPI/MBCF without SendReqs in half-duplex mode (HUB)
SRH MPI/MBCF with SendReqs in half-duplex mode (HUB)
NSRF MPI/MBCF without SendReqs in full-duplex mode (switching HUB)
SRF MPI/MBCF with SendReqs in full-duplex mode (switching HUB)
MPICH MPICH/TCP in half-duplex mode (HUB)

First we measured the round-trip time. In the evaluation program, two pro-
cesses issue MPI Irecv()'s in advance. And then one process calls MPI Isend(),
MPI Wait() (for sending), and MPI Wait() (for receiving), and another does
MPI Wait() (for receiving), MPI Isend(), and MPI Wait() (for sending). The
time in the former process from the beginning of MPI Isend() to the end of
MPI Wait() (for receiving) is measured as a round-trip time. For MPI/MBCF,
the time is measured for every iteration by 0.5�s-resolution counter, and the
minimum value is taken as a round-trip time. For MPICH/TCP, unfortunately,
this counter is not available, and the minimum value of average times is taken.

Table 3 shows the round-trip time for various message sizes. Since there is
large penalties and little bene�t to the round-trip time in full-duplex mode,
NSRF and SRF are omitted. NSRH and SRH are much faster than MPICH.
The di�erence between NSRH and SRH is caused by the di�erence between
MB FIFO and Remote Write; Remote Write is faster, and much easier to manage



because it does not require explicit acknowledgments. Because the MPI library
needs additional operations such as message matching, the SRH's round-trip
time 71�s is within a reasonable range compared with the MBCF's one-way
latency 24.5�s.

Table 3. Round-trip time of MPI with 100Base-TX

message size (byte) 0 4 16 64 256 1024 4096

NSRH (�s) 112 137 139 154 223 517 1109

SRH (�s) 71 85 85 106 168 438 1026

MPICH (�s) 968 962 980 1020 1080 1255 2195

The peak bandwidth was measured for various message sizes by sending mes-
sages in one direction, shown in Table 4. MPI/MBCFs gained higher bandwidth
than MPICH/TCP, especially for small messages. The di�erence between NSRH
and SRH reveals that the additional packets of \requests for sending" interfere
with the communication of actual data. In full-duplex mode, however, the unde-
sirable inuence of \requests for sending" is not so clear as in half-duplex mode.

Table 4. Peak bandwidth of MPI with 100Base-TX

message size (byte) 4 16 64 256 1024 4096 16384 65536 262144 1048576

NSRH (Mbyte/s) 0.14 0.54 1.89 4.92 8.54 10.21 10.34 10.43 10.02 9.96

SRH (Mbyte/s) 0.14 0.53 1.82 4.72 8.08 9.72 10.15 9.78 9.96 10.00

NSRF (Mbyte/s) 0.15 0.59 1.98 5.51 10.58 11.70 11.78 11.81 11.82 11.82

SRF (Mbyte/s) 0.14 0.57 1.90 5.33 10.22 11.68 11.77 11.85 11.85 11.86

MPICH (Mbyte/s) 0.02 0.09 0.35 1.27 3.54 6.04 5.59 7.00 7.77 7.07

5 Related Work

To reduce the bu�ering overhead, MPIAP [9] uses put and get of AP3000, and
CRI/EPCC MPI [10] uses Shared Memory Access of T3D. They send a special
message from the sender, perform message matching only on the receiver's side,
and issue remote read. This method increases latency. MPI-EMX [11] uses remote
memory write of EM-X, but all of them are implementations with dedicated
communication hardware on MPPs.



6 Summary

An MPI library has been implemented for the SSS{CORE operating system by
the use of the MBCF. The MBCF'sMB FIFO is used for bu�ering by the library,
and Remote Write for direct transmission with no bu�ering. When the receiver
precedes, Remote Write reduces the latency of communication. Even when the
sender precedes, MB FIFO e�ciently transmits the message to the receiver.

The performance of the library was evaluated on a cluster of workstations
connected with a 100Base-TX network. The round-trip time was 71�s (for 0 byte
message) and the peak bandwidth was 10.15Mbyte/s (in half-duplex mode)
and 11.86Mbyte/s (in full-duplex mode). These values show that the additional
overhead of the library is small, and that it is e�cient to use the MBCF as a
base of mechanisms for message passing. More generally, it is e�ective to use
software-implemented virtual-address-based shared memory communication as
a base of a communication system of parallel machines with distributed memory.

References

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/, June 1995.

[2] T. Matsumoto and K. Hiraki. Shared memory vs. message passing (in Japanese).
In IPSJ SIG Reports 97-ARC-126, Vol. 97, No. 102, pages 85{90, October 1997.

[3] T. Matsumoto, S. Furuso, and K. Hiraki. Resource management methods of the
general-purpose massively-parallel operating system: SSS{CORE (in Japanese).
In Proc. of 11th Conf. of JSSST, pages 13{16, October 1994.

[4] T. Matsumoto, S. Uzuhara, and K. Hiraki. A general-purpose scalable operating
system: SSS{CORE. In Proc. of 20th Int. Conf. on Software Engineering (2),
pages 147{152, April 1998.

[5] T. Matsumoto, T. Komaarashi, S. Uzuhara, S. Takeoka, and K. Hiraki. A
general-purpose massively-parallel operating system: SSS{CORE | implemen-
tation methods for network of workstations | (in Japanese). In IPSJ SIG Notes
96-OS-73, Vol. 96, No. 79, pages 115{120, August 1996.

[6] T. Matsumoto and K. Hiraki. MBCF: A protected and virtualized high-speed user-
level memory-based communication facility. In Proc. of Int. Conf. Supercomputing
'98 (to be appeared), July 1998.

[7] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An operating system coordi-
nated high performance communication library. In B. Hertzberger and P. Sloot,
editors, High-Performance Computing and Networking, volume 1225 of Lecture
Notes in Computer Science, pages 708{717. Springer Verlag, April 1997.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI Message-Passing Interface Standard. Parallel Com-
puting, 22(6):789{828, September 1996.

[9] D. Sitsky and P. Mackerras. System developments on the Fujitsu AP3000. In
P. Mackerras, editor, Proc. of 7th Parallel Computing Workshop, September 1997.

[10] K. Cameron, L. Clarke, and G. Smith. CRI/EPCC MPI for CRAY T3D.
http://www.epcc.ed.ac.uk/t3dmpi/Product/, September 1995.

[11] O. Tatebe, Y. Kodama, S. Sekiguchi, and Y. Yamaguchi. E�cient implementation
of MPI using remote memory write (in Japanese). In Proc. of Joint Symp. on
Parallel Processing '98, pages 199{206, June 1998.


